Answer:
F2 is the limiting reactant
27.6 grams of NaF is produced.
Explanation:
Balance the equation first.
2Na+ F2 ---> 2NaF
To find the limiting reactant, solve for how much NaF can be produced with Na and F2
12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)
=0.658 moles NaF
16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)
=0.705 moles NaF
Since F2 produced the least NaF, F2 is the limiting reactant.
Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.
0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF
27.6 moles of NaF would be theoretically produced.
As one element .because po4 is phosphate for e.g.: NaPO4
<span>Feb 19, 2014 - The units of k tell you that this is a second order reaction. So, to solve this, you need to use the integrated rate law for a 2nd order reaction: 1/[A] = kt + 1/[A]o 1/[A] = 0.540/Ms (835 s) + 1/0.00640 1/[A] = 607 [A] = 1.65X10^-3 M.</span><span>
</span>
Answer:
unchanged
Explanation:
In any chemical of physical process, energy is neither created nor destroyed. A process that absorbs the heat from the surroundings. ... What happens to the energy of the universe during a chemical or physical process? During any chemical or physical process, the energy of the universe remains unchanged.