Answer:
La escala del termómetro ''A'' es grados Celsius.
La escala del termómetro ''B'' es grados Fahrenheit.
Explanation:
Para hallar en qué escalas están los termómetros partimos de que la mezcla a la cuál se midió su temperatura mantuvo su temperatura constante.
Esto quiere decir que los termómetros están expresando la misma temperatura pero en una escala distinta.
Sabemos que dada una temperatura en grados Celsius ''C'' si la queremos convertir a grados Fahrenheit ''F'' debemos utilizar la siguiente ecuación :
(I)
Ahora, si reemplazamos y asumimos que la temperatura de 18° es en grados Celsius, entonces si reemplazamos
en la ecuación (I) deberíamos obtener
⇒

Efectivamente obtenemos el valor esperado. Finalmente, corroboramos que la temperatura del termómetro ''A'' está medida en grados Celsius y la temperatura del termómetro ''B'' en grados Fahrenheit.
Answer:
The horizontal range will be 
Explanation:
We have given initial speed of the shell u = 
Angle of projection = 51°
Acceleration due to gravity 
We have to find maximum range
Horizontal range in projectile motion is given by

So the horizontal range will be 
Answer:
The requested distance is 4320 meters
Explanation:
We can use the formula for velocity in this movement at constant velocity (v), which is defined as the quotient between the distance covered divided the time it took:

Since we know the velocity and the time, we can solve for the distance:

Answer: cleft grafting, inlay grafting, four-flap grafting, and whip grafting.
Explanation:
I hope I helped , Have a great day or night . Xoxoxo.
Answer: The ability to move or change an object or what a wave carries is called Energy
Explanation: Waves are disturbances in physical quantities. Example of waves are light waves, sound waves, or transverse oscillations of a string. These disturbances use energy to create and propagate, for it to move the constituent particles or change the electric or magnetic fields. Therefore, power of a wave is therefore, energy transported divided by unit time caused by the oscillations of a particular wave. The derivation of a formula for the power depends on the medium -- for light waves, the power is measured by the pointing vector, whereas for oscillations on a string, the power can be computed directly by balancing forces through the application of newton law. However, for all types of waves, the formula and physical meaning of the power takes similar forms, typically depending on the square amplitude of the waves among other factors.