Time = (distance) / (speed)
<em></em>
Time = (450 km) / (100 m/s)
Time = (450,000 m) / (100 m/s)
Time = <em>4500 seconds </em>(that's 75 minutes)
Note:
This is about HALF the speed of the passenger jet you fly in when you go to visit Grandma for Christmas.
If the International Space Station flew at this speed, it would immediately go ker-PLUNK into the ocean.
The speed of the International Space Station in its orbit is more like 3,100 m/s, not 100 m/s.
Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
Answer:
Average density of Sun is 1.3927
.
Given:
Radius of Sun = 7.001 ×
km = 7.001 ×
cm
Mass of Sun = 2 ×
kg = 2 ×
g
To find:
Average density of Sun = ?
Formula used:
Density of Sun = 
Solution:
Density of Sun is given by,
Density of Sun = 
Volume of Sun = 
Volume of Sun = ![\frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Ctimes%203.14%20%5Ctimes%20%5B7.001%20%5Ctimes%2010%5E%7B10%7D%5D%5E%7B3%7D)
Volume of Sun = 1.436 ×

Density of Sun = 
Density of Sun = 1.3927 
Thus, Average density of Sun is 1.3927
.
Answer:
it relates to the light propensity to travel over one straight line without having any interference in its trajectory
Explanation: