When atoms bond together to form molecules, they share or give electrons. If the electrons are shared equally by the atoms, then there is no resulting charge and the molecule is nonpolar.
Answer:
Few important points related to
reaction:
1.
is a one-step reaction that follows second order kinetics.
2. In
reaction, a transition state is formed in situ.
3. Strong nucleophiles like
are used in case of bi-molecular nucleophilic substitution reaction.
Ethyl acetate can be prepared by a second-order nucleophilic substitution reaction between acetic acid and ethyl bromide.
The reaction between acetic acid and ethyl bromide is drawn below:
Answer:
x(t) = −39e
−0.03t + 40.
Explanation:
Let V (t) be the volume of solution (water and
nitric acid) measured in liters after t minutes. Let x(t) be the volume of nitric acid
measured in liters after t minutes, and let c(t) be the concentration (by volume) of
nitric acid in solution after t minutes.
The volume of solution V (t) doesn’t change over time since the inflow and outflow
of solution is equal. Thus V = 200 L. The concentration of nitric acid c(t) is
c(t) = x(t)
V (t)
=
x(t)
200
.
We model this problem as
dx
dt = I(t) − O(t),
where I(t) is the input rate of nitric acid and O(t) is the output rate of nitric acid,
both measured in liters of nitric acid per minute. The input rate is
I(t) = 6 Lsol.
1 min
·
20 Lnit.
100 Lsol.
=
120 Lnit.
100 min
= 1.2 Lnit./min.
The output rate is
O(t) = (6 Lsol./min)c(t) = 6 Lsol.
1 min
·
x(t) Lnit.
200 Lsol.
=
3x(t) Lnit.
100 min
= 0.03 x(t) Lnit./min.
The equation is then
dx
dt = 1.2 − 0.03x,
or
dx
dt + 0.03x = 1.2, (1)
which is a linear equation. The initial condition condition is found in the following
way:
c(0) = 0.5% = 5 Lnit.
1000 Lsol.
=
x(0) Lnit.
200 Lsol.
.
Thus x(0) = 1.
In Eq. (1) we let P(t) = 0.03 and Q(t) = 1.2. The integrating factor for Eq. (1) is
µ(t) = exp Z
P(t) dt
= exp
0.03 Z
dt
= e
0.03t
.
The solution is
x(t) = 1
µ(t)
Z
µ(t)Q(t) dt + C
= Ce−0.03t + 1.2e
−0.03t
Z
e
0.03t
dt
= Ce−0.03t +
1.2
0.03
e
−0.03t
e
0.03t
= Ce−0.03t +
1.2
0.03
= Ce−0.03t + 40.
The constant is found using x(t) = 1:
x(0) = Ce−0.03(0) + 40 = C + 40 = 1.
Thus C = −39, and the solution is
x(t) = −39e
−0.03t + 40.
The answer is A glucose is created