Answer:
is the equation of state of a hypothetical ideal gas
Explanation:
its formula is PV=nRT
NH3(g) will take the shape of and completely fill a closed 100.0 milliliter container.
Explanation:
ur answer okkkkkkkkkkkkkkkkll
Answer:
Gas
Increase the pressure
Explanation:
Let's refer to the attached phase diagram for CO₂ (not to scale).
<em>At -57 °C and 1 atm, carbon dioxide is in which phase?</em>
If we look at the intersection between -57°C and 1 atm, we can see that CO₂ is in the gas phase.
<em>At 10°C and 2 atm carbon dioxide is in the gas phase. From these conditions, how could the gaseous CO₂ be converted into liquid CO₂?</em>
Since at 10°C and 2 atm carbon dioxide is below the triple point, the only way to convert it into liquid is by increasing the pressure (moving up in the vertical direction).
Answer:
The Ideal gas law
Explanation:
From the given question, we have:
V

where each variable has its usual meaning.
Thus,
V = 
where R is the ideal gas constant
cross multiply to have;
PV = nRT
This implies that the volume of the gas is directly proportional to the number of moles of the gas.
Therefore, the law can be used to determine the relationship between the volume and number of moles is the ideal gas law.