Using the relationship M1V1 = M2V2 where M1 and M2 are the molar concentrations (mol/L or mmol/ml) and V1 and V2 are the volumes of the solutions, we can arrive at the following answer for the given problem:
<span>15.0M (L of stock solution) = 2.35M (0.25L) *all volumes were converted to liters.
L of stock solution = (2.35*0.25)/15.0
Therefore, 0.0392L or 39.17 ml of stock solution is needed. </span>
Answer:
The answer to your question is given below
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl2 + H2
Thus, we can write out the atoms present in both the reactant and the product by doing a simple head count. The atoms present are listed below:
Element >>> Reactant >>> Product
Zn >>>>>>>> 1 >>>>>>>>>> 1
H >>>>>>>>> 2 >>>>>>>>> 2
Cl >>>>>>>>> 2 >>>>>>>>> 2
Answer:
b
Explanation:
[H3O+] = 10-pH = 10-3.4 ≅ 3.981 x 10^-4 moles/liter
First you need to know the different between an ionic and covalent bond. An ionic bond is the pairing of a metal and non-metal element. A covalent bond is the pairing of 2 nonmetals.
Metals are the elements at the left of the periodic table while non-metals are the elements at the right of the periodic table.
You should also know the diatomic (di means 2) molecules also known as the fab 7. These molecules will always form covalent bonds. These molecules are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, and iodine. With the subscripts, these molecules would be written as H ₂, N ₂, O ₂, F ₂, Cl ₂, Br ₂, and I ₂.