Answer:
The much higher power density offered by lithium ion batteries is a distinct advantage. Electric vehicles also need a battery technology that has a high energy density. ... Lithium ion cells is that their rate of self-discharge is much lower than that of other rechargeable cells such as Ni-Cad and NiMH forms.
Put this into your own words or teachers will make you redo it
Answer:
1) Ca: [Ar]4s²
2) Pm: [Xe]6s²4f⁵
Explanation:
1) Ca:
Its atomic number is 20. So it has 20 protons and 20 electrons.
Since it is in the row (period) 4 the noble gas before it is Ar, and the electron configuration is that of Argon whose atomic number is 18.
So, you have two more electrons (20 - 18 = 2) to distribute.
Those two electrons go the the orbital 4s.
Finally, the electron configuration is [Ar] 4s².
2) Pm
The atomic number of Pm is 61, so it has 61 protons and 61 electrons.
Pm is in the row (period) 6. So, the noble gas before Pm is Xe.
The atomic number of Xe is 54.
Therefore, you have to distribute 61 - 54 = 7 electrons on the orbitals 6s and 4f.
The resultant distribution for Pm is: [Xe]6s² 4f⁵.
D. To answer this question refer to the periodic table and think logically about it. Adding one proton increases the atomic number so you go along the row to Nitrogen. If you lose one neutron then the atomic mass decreases by 1 so 14-1 is 13.
Neutralization is the process in which anacid and base react to give salt and water
Answer:
7. 4H₂O
Elements: Hydrogen, Oxygen
Number of molecules: 4
Number of elements: 8 H, 4 O
Number of Atoms: 12
Explanation:
The elements are determined by the their symbol i.e. H = hydrogen.
The number of molecules is determined by the coefficient ( the number in front of everything, in this case 4).
The number of elements is determined by the coefficient and the subscripts. Multiply the coefficient by the subscript after each element. When there is no subscript, it is equal to 1. 4H₂ = 4x2 = 8; 4O = 4x1 = 4.
The number of atoms is all the individual elements added together. 8+4 = 12.