Areas of high concentration to areas of low concentration.
Answer:

Explanation:
Hello,
In this case, given the acid, we can suppose a simple dissociation as:

Which occurs in aqueous phase, therefore, the law of mass action is written by:
![Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
That in terms of the change
due to the reaction's extent we can write:

But we prefer to compute the Kb due to its exceptional weakness:

Next, the acid dissociation in the presence of the base we have:
![Kb=\frac{[OH^-][HA]}{[A^-]}=1x10^{6}=\frac{x*x}{0.1-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BOH%5E-%5D%5BHA%5D%7D%7B%5BA%5E-%5D%7D%3D1x10%5E%7B6%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.1-x%7D)
Whose solution is
which equals the concentration of hydroxyl in the solution, thus we compute the pOH:
![pOH=-log([OH^-])=-log(0.0999)=1](https://tex.z-dn.net/?f=pOH%3D-log%28%5BOH%5E-%5D%29%3D-log%280.0999%29%3D1)
Finally, since the maximum scale is 14, we can compute the pH by knowing the pOH:

Regards.
Answer:
Tetrazine is a compound that consists of a six-membered aromatic ring containing four nitrogen atoms with the molecular formula C2H2N4.
(See the image)
Hope it helps!
The volume of a gas that its pressure increase to 3.4 atm is calculated as follows
By use of boyles law that is P1V1=P2V2
V1=4.0 L
P1=1.1 atm
P2=3.4 atm
V2= P1V1/P2
(1.1 atm x 4.0 L)/3.4 atm= 1.29 L