Answer:
a) 40,75 atm
b) 30,11 atm
Explanation:
The Ideal Gas Equation is an equation that describes the behavior of the ideal gases:
PV = nRT
where:
- P = pressure [atm]
- V = volume [L]
- n = number of mole of gas [n]
- R= gas constant = 0,08205 [atm.L/mol.°K]
- T=absolute temperature [°K]
<em>Note: We can express this values with other units, but we must ensure that the units used are the same as those used in the gas constant.</em>
The truncated virial equation of state, is an equation used to model the behavior of real gases. In this, unlike the ideal gas equation, other parameters of the gases are considered as the <u>intermolecular forces</u> and the <u>space occupied</u> by the gas

where:
- v is the molar volume [L/mol]
- B is the second virial coefficient [L/mol]
- P the pressure [atm]
- R the gas constant = 0,08205 [atm.L/mol.°K]
a) Ideal gas equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
We clear pressure of the idea gas equation and replace the data:
PV = nRT ..... P = nRT/V = 5 * 0,08205 * 298/3 =40,75 atm
b) Truncated virial equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
B = -156,7*10^-6 m3/mol = -156,7*10^-3 L/mol
We clear pressure of the idea gas equation and replace the data:

and v = 3 L/5 moles = 0,6 L/mol

Answer:
The answer is explained below
Explanation:
If you add dilute HCl (Hydrochloric Acid) to the solution, and you see fizzing, then it is the carbonate. I would recommend doing this under a fume hood, as HCl has a wicked smell, and can make a few people sick to their stomach (however, you probably won't be using 12M concentrated HCl)
Answer:
When the two atoms move towards each other a compound is formed by sharing electron pairs supplied by each of the atoms to enable them have the stable 8 (octet) valency electrons in their outermost shell
Explanation:
The electronic configuration of the given element can be written as follows;
1s²2s²2p⁴
The given electronic configuration is equivalent to that of oxygen, therefore, we have;
The number of electrons in the valence shell = 2 + 4 = 6 electrons
Therefore, each atom requires 2 electrons to complete its 8 (octet) electrons in the outermost shell
When the two atoms move towards each other, they react and combine to form a compound by sharing 4 electrons, 2 from each atom, such that each atom can have an extra 2 electrons in its outermost orbit in the newly formed compound and the stable octet configuration is attained by each of the atoms in the newly formed compound.
Schrödinger found the quantum mechanical model of the atom after Bohr’s model.
It is better than Bohr’s model because you can use mathematical equations to find electrons certain position. Unlike Bohr’s which is just a “cloud” where the an electron could possibly be.
Explanation:
solid: table, biscuit
liquid: water, urine
gas: oxygen, carbon dioxide