Filtration
distillation
crystallization
chromatography
Answer:
The jewelry is 2896.54_Kg/m^3 less dense than pure silver
Explanation:
Density of jewellery = (mass of jewellery) ÷ (volume of jewellery)
=3.25g ÷ 0.428mL = 0.00325Kg÷0.000000428m^3 = 7583.46Kg/m^3
The density of silver is 10490_Kg/m^3 which is (10490 - 7583.46) 2896.54_Kg/m^3 more dense than the jewellery
The density of Silver [Ag]
The weight of Silver per cubic centimeter is 10.49 grams or the weight of silver per cubic meter is 10490 kilograms, that is the density of silver is 10490 kg/m³; at 20°C (68°F or 293.15K) at a pressure of one atmospheres.
Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
Answer:
17.934 kg of water
Explanation:
If balanced equation is not given; this format can come in handy.
For any alkane of the type : CₙH₂ₙ₊₂ , it's combustion reaction will follow:
2CₙH₂ₙ₊₂ + (3n+1) O₂ → (2n)CO₂ + 2(n+1) H₂O
For butane:
2C₄H₁₀(g) + 13O₂(g) → 8CO₂(g) + 10H₂O(l)
2 moles of butane gives 10 moles of water.
1 mol of any substance has Avogadro number(N) of molecules in it( 6.022 x 10²³)
Mass of 1 mole of any substance is equal to it's molar mass
So, if 2 x N molecules of butane gives 10 x 18 g of water.
Then 1.2 x 10²⁶ molecules will give:

= 17.934 x 10³ g of water
= 17.934 kg of water
Answer:
a.
△H=−72 kcal
The energy required for production of 1.6 g of glucose is [molecular mass of glucose is 180 gm]
b.

The iron(III) ions and chloride ions remain aqueous and are spectator ions in a reaction that produces solid barium sulfate.