Answer:
moon, planet, sun, solar system, galaxy, Universe
Explanation:
I am not fully sure but I think this is right
but I apologize if it is wrong
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Ignition wires make it more accurate because it will cook it faster
stirrer would have the less results of fast
a sealed bomb may cook it fast but you would have to be careful and don't mess up
Each step of the food chain in the energy pyramid is called a trophic level. Plants or other photosynthetic organisms (autotrophs) are found on the first trophic level, at the bottom of the pyramid. The next level will be the herbivores, and then the carnivores that eat the herbivores.
Answer : The concentration of A after 80 min is, 0.100 M
Explanation :
Half-life = 20 min
First we have to calculate the rate constant, we use the formula :



Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = 80 min
a = initial amount of the reactant = 1.6 M
a - x = amount left after decay process = ?
Now put all the given values in above equation, we get


Therefore, the concentration of A after 80 min is, 0.100 M