Hi, the temperature of water is not a physical characteristic because it does not tell us a lot about the substance.
Answer:
Similarities: both state the mass of chemical species and they have the same numerical value
Differences: molecular mass refers to one single molecule and molar mass refers to one mole of a molecule
Explanation:
The molecular mass is the value of the mass of each molecule and it is measured in mass units (u). It is calculated adding the mass of each atom of the molecule.
The molar mass is the value of the mass of one mole of molecules, which means the mass of 6.022140857 × 10²³ molecules. The unit is g/mol.
For example, we can consider the methane molecule, which has the chemical formula of CH₄:
Molecular mass CH₄ = C mass + 4 x (H mass)
Molecular mass CH₄ = 12.01 + 4 x (1.01)
Molecular mass CH₄ = 16.05 u
Now to calculate the molar mass we multiply the value of the molecular mass by the Avogadro number and convert the units to g/mol:
Molar mass CH₄: 16.05 x x 6.022140857 × 10²³ mol⁻¹
Molecular mass CH₄ = 16.05 g / mol
It is a liquid because when you have a liquid, there is no definite shape. Therefore, this would be the answer because it takes the shape of its container.
Final answer: a. Liquid
Answer:
C₃H₆O₂
Explanation:
Propionic acid is a colorless liquid with a sharp rancid odor. Produces irritating vapor. (USCG, 1999)
<u>Answer:</u> The mass of sucrose required is 69.08 g
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 8.80 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (sucrose) = ?
Molar mass of sucrose = 342.3 g/mol
Volume of solution = 564 mL (Density of water = 1 g/mL)
R = Gas constant =
T = Temperature of the solution = 290 K
Putting values in above equation, we get:
Hence, the mass of sucrose required is 69.08 g