The correct option is this: SPECIFIC HEAT CAPACITY IS AN INTENSIVE PROPERTY AND DOES NOT DEPEND ON SAMPLE SIZE.
Generally, all the properties of matters can be divided into two classes, these are intensive and extensive properties. Intensive properties are those properties that are not determined by the quantity of the material that is present or available. Examples of intensive properties are colour, density and specific heat capacity. For instance, whether you have a bucket of water or a cup of water, the quantity does not matter, the colour of water will always remain the same. Extensive properties in contrast, are those properties that depend on the quantity of material that is available. Examples are mass, heat capacity and volume.
Answer:
depends on how many you have...
Explanation:
Volume fraction = volume of the element / volume of the alloy
Volume = density * mass
Base: 100 grams of alloy
mass of tin = 15 grams
mass of lead = 85 grams
volume = mass / density
Volume of tin = 15g / 7.29 g/cm^3 = 2.06 cm^3
Volume of lead = 85 g / 11.27 g/cm^3 = 7.54 cm^3
Volume fraction of tin = 2.06 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.215
Volume fraction of lead = 7.54 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.785
As you can verify the sum of the two volume fractions equals 1: 0.215 + 0.785 = 1.000
Answer:
I would say the answer is b.
Explanation: