Q1: sort your numbers into numerical order so you can determine the highest and lowest measured values. and then subtract the lowest measured value from the highest measured value. Now determine that the answer is the precision.
Q2: In one meter there are 100 centemeter. Now you got 5.8 miles per hour which will become 580 centemeter per hour. In addition, there are 60 minutes in an hour. Based on what we know, 580 centemeters per hour will and should become 580/60 cm/min
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.
D. due to the the water it will bring sand with the water there for us is D.
Answer: The energy of an electron in the n = 2 level of a hydrogen atom is 3.40 eV.
Explanation:
Given: n = 2
The relation between energy and
orbit of an atom is as follows.

Substitute the values into above formula as follows.

The negative sign indicates that energy is being released.
Thus, we can conclude that the energy of an electron in the n = 2 level of a hydrogen atom is 3.40 eV.