Answer:
The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.
Explanation:
Given that,
Frequency of sound wave = 240 Hz
Distance = 46.0 m
Distance of fork = 14 .0 m
We need to calculate the path difference
Using formula of path difference
Put the value into the formula
We need to calculate the wavelength
Using formula of wavelength
Put the value into the formula
We need to calculate the phase difference
Using formula of the phase difference
Put the value into the formula
Hence, The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.
Answer:
a) 12.8212 N
b) 12.642 N
Explanation:
Mass of bucket = m = 0.54 kg
Rate of filling with sand = 56.0 g/ sec = 0.056 kg/s
Speed of sand = 3.2 m/s
g= 9.8 m/sec2
<u>Condition (a);</u>
Mass of sand = Ms = 0.75 kg
So total mass becomes = bucket mass + sand mass = 0.54 +0.75=1.29 kg
== > total weight = 1.29 × 9.8 = 12.642 N
Now impact of sand = rate of filling × velocity = 0.056 × 3.2 = 0.1792 kg. m /sec2=0.1792 N
Scale reading is sum of impact of sand and weight force ;
i-e
scale reading = 12.642 N+0.1792 N = 12.8212 N
<u>Codition (b);</u>
bucket mass + sand mass = 0.54 +0.75=1.29 kg
==>weight = mg = 1.29 × 9.8 = 12.642 N (readily calculated above as well)
No, because the distance-time would show a constant velocity but the velocity-time graph shows an increasing velocity.
Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.
The position vector can be
transcribed as:
A<span> = 6 i + y j
</span>
i <span>points in the x-direction and j points
in the y-direction.</span>
The magnitude of the
vector is its dot product with itself:
<span>|A|2 = A·A</span>
<span>102 = (6 i +
y j)•(6 i+ y j)
Note that i•j = 0, and i•i = j•j =
1 </span>
<span>100 = 36 + y2
</span>
<span>64 = y2</span>
<span>get the square root of 64 = 8</span>
<span>The vertical component of the vector is 8 cm.</span>