1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
3 years ago
13

How efficient are the small and large scale solar-power systems used in individual homes and industrial settings? What is the en

vironmental impact of the generation of solar power?
In detail plz
Physics
1 answer:
Leviafan [203]3 years ago
4 0

Answer:

\color{Blue}\huge\boxed{Answer}

<em>The potential environmental impacts associated with solar power—land use and habitat loss, water use, and the use of hazardous materials in manufacturing—can vary greatly depending on the technology, which includes two broad categories: photovoltaic (PV) solar cells or concentrating solar thermal plants (CSP).</em>

Explanation:

I just answer the second question

You might be interested in
A power lifter performs a dead lift, raising a barbell with a mass of 305 kg to a height of 0.42 m above the ground, giving the
Ann [662]

Answer:

Explanation:

Before it hits the ground:

The initial potential energy = the final potential energy + the kinetic energy

mgH = mgh + 1/2 mv²

gH = gh + 1/2 v²

v = √(2g (H - h))

v = √(2 * 9.81 m/s² * (0.42 m - 0.21 m))

v ≈ 2.0 m/s

When it hits the ground:

Initial potential energy = final kinetic energy

mgH = 1/2 mv²

v = √(2gH)

v = √(2 * 9.81 m/s² * 0.42 m)

v ≈ 2.9 m/s

Using a kinematic equation to check our answer:

v² = v₀² + 2a(x - x₀)

v² = (0 m/s)² + 2(9.8 m/s²)(0.42 m)

v ≈ 2.9 m/s

3 0
3 years ago
Define the law of conservation of energy
rusak2 [61]
In physics, the law of conservation of energy<span> states that the total</span>energy<span> of an isolated system remains constant—it is said to be conserved over time. </span>Energy<span> can neither be created nor destroyed; rather, it transforms from one form to another.</span>
5 0
3 years ago
Read 2 more answers
Train cars are coupled together by being bumped into one another. Suppose two loaded cars are moving toward one another, the fir
tia_tia [17]

Answer:

7560 Joules

Explanation:

m_1 = Mass of first car = 1.5\times 10^5\ kg

m_2 = Mass of second car = 2\times 10^5\ kg

u_1 = Initial Velocity of first car = 0.3 m/s

u_2 = Initial Velocity of second car = -0.12 m/s

v = Velocity of combined mass

As linear momentum of the system is conserved

m_1u_1 + m_2u_2 =(m_1 + m_2)v\\\Rightarrow v=\frac{m_1u_1 + m_2u_2}{m_1 + m_2}\\\Rightarrow v=\frac{1.5\times 10^5\times 0.3 + 2\times 10^5\times -0.12}{1.5\times 10^5 + 2\times 10^5}\\\Rightarrow v=0.06\ m/s

Energy lost is

\Delta E=\Delta E_i-\Delta E_f\\\Rightarrow \Delta=\frac{1}{2}(m_1u_1^2 + m_2u_2^2-(m_1+m_2)v^2)\\\Rightarrow \Delta=\frac{1}{2}(1.5\times 10^5\times 0.3^2 + 2\times 10^5\times (-0.12)^2-(1.5\times 10^5 + 2\times 10^5)\times 0.06^2)\\\Rightarrow \Delta=7560\ J

The Energy lost in the collision is 7560 Joules

7 0
3 years ago
For the wave of light you generated in the Part B, calculate the amount of energy in 1.0 mol of photons with that same frequency
Angelina_Jolie [31]

Answer:

2.7 J

Explanation:

The energy of one photon is given by

E=hf

where

h is the Planck constant

f is the frequency

For the photons in this problem,

f=6.8\cdot 10^9 Hz

So the energy of one photon is

E_1=(6.63\cdot 10^{-34})(6.8\cdot 10^9 )=4.5\cdot 10^{-24} J

The number of photons contained in 1.0 mol is

N_A = 6.022\cdot 10^{23} mol^{-1} (Avogadro number)

So the total energy of N_A photons contained in 1.0 mol is

E=N_A E_1 =(6.022\cdot 10^{23})(4.5\cdot 10^{-24})=2.7 J

3 0
3 years ago
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is. (a) How m
Gelneren [198K]

Answer:

a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C

Explanation:

Here is the complete question

A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?

Solution

a.

i = Q/t = ne/t

n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s

So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C

       = 4.98 × 10¹⁹ protons

       ≅ 5 × 10¹⁹ protons

b

The total kinetic energy of the protons = heat change of target

total kinetic energy of the protons = n × kinetic energy per proton

                                                         = 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton

                                                         = 30 × 10⁷ J

heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)

ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)

     = 30 × 10⁷/14.62

     = 2.05 × 10⁷ °C

5 0
2 years ago
Other questions:
  • which part of a circuit creates an electric force field that makes it possible for the circuit to work
    12·1 answer
  • As a ball falls freely toward the ground, its total
    9·1 answer
  • Which statement best compares momentum and kinetic energy?
    9·2 answers
  • Similarities in tennis and volleyball
    13·1 answer
  • A 27.4 kg dog is running northward at 2.19 m/s , while a 7.19 kg cat is running eastward at 2.78 m/s . Their 75.7 kg owner has t
    10·1 answer
  • Light of wavelength λ travels through a medium with an index of refraction n1before striking a thin film with an index of refrac
    15·1 answer
  • Sally and Sam are in a spaceship that comes to within 16,000 km of the asteroid Ceres. Determine the force Sally experiences, in
    9·1 answer
  • Calculate the amount of work done (in joules) to raise the 0.2kg mass 0.5 m
    7·1 answer
  • A young diver is practicing his skills before an important team competition. Use the diagram below in order to analyze the energ
    5·2 answers
  • What is the equivalent resistance?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!