Answer:
Explanation:
Before it hits the ground:
The initial potential energy = the final potential energy + the kinetic energy
mgH = mgh + 1/2 mv²
gH = gh + 1/2 v²
v = √(2g (H - h))
v = √(2 * 9.81 m/s² * (0.42 m - 0.21 m))
v ≈ 2.0 m/s
When it hits the ground:
Initial potential energy = final kinetic energy
mgH = 1/2 mv²
v = √(2gH)
v = √(2 * 9.81 m/s² * 0.42 m)
v ≈ 2.9 m/s
Using a kinematic equation to check our answer:
v² = v₀² + 2a(x - x₀)
v² = (0 m/s)² + 2(9.8 m/s²)(0.42 m)
v ≈ 2.9 m/s
In physics, the law of conservation of energy<span> states that the total</span>energy<span> of an isolated system remains constant—it is said to be conserved over time. </span>Energy<span> can neither be created nor destroyed; rather, it transforms from one form to another.</span>
Answer:
7560 Joules
Explanation:
= Mass of first car = 
= Mass of second car = 
= Initial Velocity of first car = 0.3 m/s
= Initial Velocity of second car = -0.12 m/s
v = Velocity of combined mass
As linear momentum of the system is conserved

Energy lost is

The Energy lost in the collision is 7560 Joules
Answer:
2.7 J
Explanation:
The energy of one photon is given by

where
h is the Planck constant
f is the frequency
For the photons in this problem,

So the energy of one photon is

The number of photons contained in 1.0 mol is
(Avogadro number)
So the total energy of
photons contained in 1.0 mol is

Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C