1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tamaranim1 [39]
3 years ago
14

In which of these samples do the molecules most likely have the most kinetic energy? (2 points)

Physics
1 answer:
Vinvika [58]3 years ago
4 0

D, water vapor. Gaseous state would have more kinetic energy, they are moving faster. If you have to compare the same state, then higher temperature would have the higher kinetic energy. But if you have solid and liquid at the same temperature - then liquid would have more.

You might be interested in
If you double the pressure on the surface of a can of water, the buoyant force on a stone placed in that water will
Bingel [31]
The buoyant force won't change.
4 0
3 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
2 years ago
Which type of climate has no winter
Scilla [17]
Humid tropical climates are climates that have no winters.
4 0
3 years ago
Read 2 more answers
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal. The cart accelerates at 1.4 m/s2. The free-body di
Pachacha [2.7K]

Answer:

m=146.277kg which is rounded to 146kg

Explanation:

Remember that F=ma

But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.

So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg

Mass is always in kg, unless stated otherwise.

4 0
2 years ago
Read 2 more answers
The y component of a vector is 36, and the angle between the vector and the x axis is 27 what is the magnitude of the vector
xz_007 [3.2K]

Answer:

Magnitude of Vector = 79.3

Explanation:

When a vector is resolved into its rectangular components, it forms two vector components. These components  are named as x-component and y-component, they are calculated by the following formulae:

x-component of vector = (Magnitude of Vector)(Cos θ)

y-component of vector = (Magnitude of Vector)(Sin θ)

where,

θ = angle of the vector with x-axis = 27°

Therefore, using the values in the equation of y-component, we get:

36 = (Magnitude of Vector)(Sin 27°)

Magnitude of Vector = 36/Sin 27°

<u>Magnitude of Vector = 79.3</u>

3 0
2 years ago
Other questions:
  • Which two elements will most likely form an ionic bond? (Click on the periodic table icon to view these elements) krypton and li
    11·2 answers
  • A parachutist bails out and freely falls 50 m. Then the parachute opens, and thereafter she deceler- ates at 2.0 m/s2. She reach
    11·1 answer
  • What number is neutrons protons electrons of helium
    5·1 answer
  • What is a factor that limits a technological design?
    6·2 answers
  • A light platform is suspended from the ceiling by a spring. A student with a mass of 90 kg climbs onto the platform. When it sto
    11·1 answer
  • A source emits a sound and is represented by the red dot in this map. Four people are located around the source, and the circles
    13·2 answers
  • A conclusion is a possible answer to a question. True or False?
    15·2 answers
  • Three small spheres, having masses m1 = 1 kg, m2 = 3 kg, and m3 = 4 kg, are held fixed on the x axis in deep space where the eff
    13·2 answers
  • 1) Consider an electric power transmission line that carries a constant electric current of i = 500 A. The cylindrical copper ca
    12·1 answer
  • What force (in N) must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2100 kg car (a large car
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!