Answer:
True.
Explanation:
A nanometer is a unit of mass, whereas a nanosecond is a unit of time. To convert 1.3 hours to minute, you would multiply by 1 h / 60 min. Kilometer is a unit of length, whereas kilogram is a unit of mass. True.
"<em>F = dP/dt. </em> The net force acting on an object is equal to the rate at which its momentum changes."
These days, we break up "the rate at which momentum changes" into its units, and then re-combine them in a slightly different way. So the way WE express and use the 2nd law of motion is
"<em>F = m·A.</em> The net force on an object is equal to the product of the object's mass and its acceleration."
The two statements say exactly the same thing. You can take either one and work out the other one from it, just by working with the units.
Answer:
λ = 5.85 x 10⁻⁷ m = 585 nm
f = 5.13 x 10¹⁴ Hz
Explanation:
We will use Young's Double Slit Experiment's Formula here:

where,
λ = wavelength = ?
Y = Fringe Spacing = 6.5 cm = 0.065 m
d = slit separation = 0.048 mm = 4.8 x 10⁻⁵ m
L = screen distance = 5 m
Therefore,

<u>λ = 5.85 x 10⁻⁷ m = 585 nm</u>
Now, the frequency can be given as:

where,
f = frequency = ?
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>f = 5.13 x 10¹⁴ Hz</u>
By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4
... I can’t see the attached assignment that you put on here.