The formula for frequency is f = 1/T where f is frequency and T is period in seconds.
You have you period which is 0.008s and that is all you will need to solve or frequency in a wave:
f = 1/2
f = 1/0.008s
f = 125Hz
Answer:
The maximum electric power output is 
Explanation:
From the question we are told that
The capacity of the hydroelectric plant is 
The level at which water is been released is 
The efficiency is
0.90
The electric power output is mathematically represented as
Where
is the potential energy at level h which is mathematically evaluated as

and
is the potential energy at ground level which is mathematically evaluated as


So
here 
where V is volume and
is density of water whose value is 
So

substituting values


The maximum possible electric power output is

substituting values


<span>f(x) = 5.05*sin(x*pi/12) + 5.15
First, you need to determine the period of the function. The period will be the time interval between identical points on the sinusoidal function. For this problem, the tide is rising and at 5.15 at midnight for two consecutive days. So the period is 24 hours. Over that 24 hour period, we want the parameter passed to sine to range from 0 to 2*pi. So the scale factor for x will be 2*pi/24 = pi/12 which is approximately 0.261799388. The next thing to note is the magnitude of the wave. That will simply be the difference between the maximum and minimum values. So 10.2 ft - 0.1 ft = 10.1 ft. And since the value of sine ranges from -1 to 1, we need to divide that magnitude by 2, so 10.1 ft / 2 = 5.05 ft.
So our function at this point looks like
f(x) = 5.05*sin(x*pi/12)
But the above function ranges in value from -5.05 to 5.05. So we need to add a bias to it in order to make the low value equal to 0.1. So 0.1 = X - 5.05, 0.1 + 5.05 = X, 5.15 = X. So our function now looks like:
f(x) = 5.05*sin(x*pi/12) + 5.15
The final thing that might have been needed would have been a phase correction. With this problem, we don't need a phase correction since at X = 0 (midnight), the value of X*pi/12 = 0, and the sine of 0 is 0, so the value of the equation is 5.15 which matches the given value of 5.15. But if the problem had been slightly different and the height of the tide at midnight has been something like 7 feet, then we would have had to calculate a phase shift value for the function and add that constant to the parameter being passed into sine, making the function look like:
f(x) = 5.05*sin(x*pi/12 + C) + 5.15
where
C = Phase correction offset.
But we don't need it for this problem, so the answer is:
f(x) = 5.05*sin(x*pi/12) + 5.15
Note: The above solution assumes that angles are being measured in radians. If you're using degrees, then instead of multiplying x by 2*pi/24 = pi/12, you need to multiply by 360/24 = 15 instead, giving f(x) = 5.05*sin(x*15) + 5.15</span>
Answer:
1. energy lost in the lever due to friction
3. visual estimation of height of the beanbag
5. position of the fulcrum for the lever affecting transfer of energy
Explanation:
Edge 2021
Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2