FIRST PARTWe need to find sin α, cos α, and cos β, tan β
α and β is located on third quadrant, sin α, cos α, and sin β, cos β are negative
Determine ratio of ∠α
Use the help of right triangle figure to find the ratio
tan α = 5/12
side in front of the angle/ side adjacent to the angle = 5/12
Draw the figure, see image attached
Using pythagorean theorem, we find the length of the hypotenuse is 13
sin α = side in front of the angle / hypotenuse
sin α = -12/13
cos α = side adjacent to the angle / hypotenuse
cos α = -5/13
Determine ratio of ∠β
sin β = -1/2
sin β = sin 210° (third quadrant)
β = 210°
![cos \beta = -\frac{1}{2} \sqrt{3}](https://tex.z-dn.net/?f=cos%20%5Cbeta%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20%20%5Csqrt%7B3%7D%20)
SECOND PARTSolve the questions
Find sin (α + β)
sin (α + β) = sin α cos β + cos α sin β
![sin( \alpha + \beta )=(- \frac{12}{13} )( -\frac{1}{2} \sqrt{3})+( -\frac{5}{13} )( -\frac{1}{2} )](https://tex.z-dn.net/?f=sin%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28-%20%5Cfrac%7B12%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%20%5Csqrt%7B3%7D%29%2B%28%20-%5Cfrac%7B5%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%29%20)
![sin( \alpha + \beta )=(\frac{12}{26}\sqrt{3})+( \frac{5}{26} )](https://tex.z-dn.net/?f=sin%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B12%7D%7B26%7D%5Csqrt%7B3%7D%29%2B%28%20%5Cfrac%7B5%7D%7B26%7D%20%29)
![sin( \alpha + \beta )=(\frac{5+12\sqrt{3}}{26})](https://tex.z-dn.net/?f=sin%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B5%2B12%5Csqrt%7B3%7D%7D%7B26%7D%29)
Find cos (α - β)
cos (α - β) = cos α cos β + sin α sin β
![cos( \alpha + \beta )=(- \frac{5}{13} )( -\frac{1}{2} \sqrt{3})+( -\frac{12}{13} )( -\frac{1}{2} )](https://tex.z-dn.net/?f=cos%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28-%20%5Cfrac%7B5%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%29%2B%28%20-%5Cfrac%7B12%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%29)
![cos( \alpha + \beta )=(\frac{5}{26} \sqrt{3})+( \frac{12}{26} )](https://tex.z-dn.net/?f=cos%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B5%7D%7B26%7D%20%5Csqrt%7B3%7D%29%2B%28%20%5Cfrac%7B12%7D%7B26%7D%20%29)
![cos( \alpha + \beta )=(\frac{5\sqrt{3}+12}{26} )](https://tex.z-dn.net/?f=cos%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B5%5Csqrt%7B3%7D%2B12%7D%7B26%7D%20%29)
Find tan (α - β)
![tan( \alpha - \beta )= \frac{ tan \alpha-tan \beta }{1+tan \alpha tan \beta }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20tan%20%5Calpha-tan%20%5Cbeta%20%7D%7B1%2Btan%20%5Calpha%20%20tan%20%5Cbeta%20%7D)
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{1+(\frac{5}{12}) ( \frac{1}{2} \sqrt{3})}](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%20%20%20%7D%7B1%2B%28%5Cfrac%7B5%7D%7B12%7D%29%20%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%29%7D)
Simplify the denominator
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{1+(\frac{5\sqrt{3}}{24})}](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%20%20%20%7D%7B1%2B%28%5Cfrac%7B5%5Csqrt%7B3%7D%7D%7B24%7D%29%7D)
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%20%7D%7B%20%5Cfrac%7B24%2B5%5Csqrt%7B3%7D%7D%7B24%7D%20%7D)
Simplify the numerator
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{6}{12} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B6%7D%7B12%7D%20%5Csqrt%7B3%7D%20%7D%7B%20%5Cfrac%7B24%2B5%5Csqrt%7B3%7D%7D%7B24%7D%20%7D)
![tan( \alpha - \beta )= \frac{ \frac{5-6\sqrt{3}}{12} }{ \frac{24+5\sqrt{3}}{24} }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5-6%5Csqrt%7B3%7D%7D%7B12%7D%20%7D%7B%20%5Cfrac%7B24%2B5%5Csqrt%7B3%7D%7D%7B24%7D%20%7D)
Simplify the fraction
![tan( \alpha - \beta )= (\frac{5-6\sqrt{3}}{12} })({ \frac{24}{24+5\sqrt{3}})](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%28%5Cfrac%7B5-6%5Csqrt%7B3%7D%7D%7B12%7D%20%7D%29%28%7B%20%5Cfrac%7B24%7D%7B24%2B5%5Csqrt%7B3%7D%7D%29)
Answer:
1. -6t - 18
2. 21n - 14
3. -28 + 7t
4. 5m - 30
5. -48 + 8c
6. -15y -24
Step-by-step explanation:
Hope this helps!!!
<h2>
Answer with explanation:</h2><h2 />
The confidence interval for population mean is given by :-
![\overline{x} \pm\ t_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%20%5Cpm%5C%20t_%7B%5Calpha%2F2%7D%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
Given : Sample size : n= 5, since n<30 , so the test we use here is t-test.
Sample mean : ![\overline{x}=1.9\text{ pounds}](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%3D1.9%5Ctext%7B%20pounds%7D)
Standard deviation: ![\sigma=0.89\text{ pounds}](https://tex.z-dn.net/?f=%5Csigma%3D0.89%5Ctext%7B%20pounds%7D)
Significance level : ![1-\alpha:1-0.99=0.01](https://tex.z-dn.net/?f=1-%5Calpha%3A1-0.99%3D0.01)
By using the standard normal distribution table , the critical value corresponds to the given significance level will be :-
![t_{n-1,\alpha/2}=t_{5-1,0.01/2}=t_{4,0.005}=4.604](https://tex.z-dn.net/?f=t_%7Bn-1%2C%5Calpha%2F2%7D%3Dt_%7B5-1%2C0.01%2F2%7D%3Dt_%7B4%2C0.005%7D%3D4.604)
Now, the 99% confidence interval for the mean waste recycled per person per day for the population of Texas will be :-
![1.9\pm\ (4.604)\dfrac{0.89}{\sqrt{5}}\\\\\approx1.9\pm1.832\\\\=(1.9-1.832,1.9+1.832)=(0.068,\ 3.732)](https://tex.z-dn.net/?f=1.9%5Cpm%5C%20%284.604%29%5Cdfrac%7B0.89%7D%7B%5Csqrt%7B5%7D%7D%5C%5C%5C%5C%5Capprox1.9%5Cpm1.832%5C%5C%5C%5C%3D%281.9-1.832%2C1.9%2B1.832%29%3D%280.068%2C%5C%203.732%29)
Hence, the 99% confidence interval for the mean waste recycled per person per day for the population of Texas = (0.068, 3.732)
The diameter is 16 so that is the answer<span />