1. Aqeuous or dissolved
2.AgNO3+ NaCl are reactants
3. NaNO3 is precipitate
4. Reaction is endothermic(Delta stands for Heat)
5. Neither a reactant nor a product, MnO2 is a catalyst
Please Mark Brainliest. Hope the Answer helps
Answer:
The enthalpy of the reaction is coming out to be -380.16 kJ.
Explanation:
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2 mol\times \Delta H_f_{(N_2O)})+(2 mol\times\Delta H_f_{(H_2O)} )]-[(1 mol\times \Delta H_f_{(N_2H_4)})+(1 mol\times \Delta H_f_{(N_2O_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O%29%7D%29%2B%282%20mol%5Ctimes%5CDelta%20H_f_%7B%28H_2O%29%7D%20%29%5D-%5B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2H_4%29%7D%29%2B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(2 mol\times 81.6 kJ/mol)+2 mol\times -241.8 kJ/mol)]-[(1 mol\times (50.6 kJ/mol))+(1 mol\times (9.16))]\\\\\Delta H_{rxn}=-380.16 kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%2081.6%20kJ%2Fmol%29%2B2%20mol%5Ctimes%20-241.8%20kJ%2Fmol%29%5D-%5B%281%20mol%5Ctimes%20%2850.6%20kJ%2Fmol%29%29%2B%281%20mol%5Ctimes%20%289.16%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-380.16%20kJ)
Hence, the enthalpy of the reaction is coming out to be -380.16 kJ.
Answer:
C. 0.20 M Mg ion & 0.40 M Cl ion
Explanation:
MgCl₂ is a ionic salt which is dissociated as this
MgCl₂ → Mg²⁺ + 2Cl⁻
First of all, we have a solution of 200 mL, with [MgCl₂] = 0.6M
Molarity . volume = moles.
0.6 mol/l . 0.2l = 0.12 mol
MgCl₂ → Mg²⁺ + 2Cl⁻
0.12mol 0.12 0.24
This moles are also in 400mL of water, so the new concentration is
[Mg²⁺] = 0.12 m/0.6L = 0.2M
[Cl⁻] = 0.24 m/0.6L = 0.4M
Remember we initially have 200mL and then, we add 400 mL, so we supose aditive volume. (600mL)
Beta radiation / decay would likely occur when the ratio of protons to neutrons is below the band of stability.
If you start with 40.0 grams of the element at noon, 10.0 grams
radioactive element will be left at 2 p.m. The correct answer between
all the choices given is the second choice or letter B. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.