Same strategy as before: transform <em>X</em> ∼ Normal(76.0, 12.5) to <em>Z</em> ∼ Normal(0, 1) via
<em>Z</em> = (<em>X</em> - <em>µ</em>) / <em>σ</em> ↔ <em>X</em> = <em>µ</em> + <em>σ</em> <em>Z</em>
where <em>µ</em> is the mean and <em>σ</em> is the standard deviation of <em>X</em>.
P(<em>X</em> < 79) = P((<em>X</em> - 76.0) / 12.5 < (79 - 76.0) / 12.5)
… = P(<em>Z</em> < 0.24)
… ≈ 0.5948
Answer:
Step-by-step explanation:
Divide
Answer:
200
Step-by-step explanation:
<u>Step 1: Add</u>
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
1 + 2 = 3
3 + 3 = 6
6 + 4 = 10
10 + 5 = 15
15 + 6 = 21
21 + 7 = 28
28 + 8 = 36
36 + 9 = 45
45 + 1 = 46
46 + 2 = 48
48 + 3 = 51
51 + 4 = 55
55 + 5 = 60
60 + 6 = 66
66 + 7 = 73
73 + 8 = 81
81 + 9 = 90
90 + 10 = 100
<em>100</em>
<u>Step 2: Multiply</u>
100 * 2
<em>200</em>
Answer: 200
Answer:

Step-by-step explanation:
The point-slope form of an equation of a line:

<em>m</em><em> - slope</em>
<em>(x₁, y₁)</em><em> - point on a line</em>
<em />
We have

Substitute:

Answer:
last one
Step-by-step explanation: