<span>First divide the ionization energy by Avogadro's number to get the energy per atom of potassium;
</span>419 kj/mol / 6.023 x 10²³
= 4.19 x 10⁵ / 6.023 x 10²³ = 6.96 x 10⁻¹⁹
E = hc/λ
where lambda (λ<span>) is the wavelength, h is Planck's constant, c is the speed of light
</span>E = 6.96 x 10⁻¹⁹ j/atom<span>
h =</span>6.63x10⁻³⁴<span> Js
c = 3 x 10</span>⁸ m/s
λ = ?
λ = hc/E = (6.63x10⁻³⁴ x 3 x 10⁸ ) / 6.96 x 10⁻¹⁹ = 285.8nm = 286nm
<span>The longest wavelength of light capable of this ionization is 286nm.</span>
Answer: I think it’s the first one
Answer : The molarity after a reaction time of 5.00 days is, 0.109 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = 5.00 days
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.110 M
Now put all the given values in above equation, we get:
![9.7\times 10^{-6}=\frac{1}{5.00}\left (\frac{1}{[A]}-\frac{1}{(0.110)}\right)](https://tex.z-dn.net/?f=9.7%5Ctimes%2010%5E%7B-6%7D%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.110%29%7D%5Cright%29)
![[A]=0.109M](https://tex.z-dn.net/?f=%5BA%5D%3D0.109M)
Hence, the molarity after a reaction time of 5.00 days is, 0.109 M
Answer:
on the surface of the cathode
Answer:
I believe this is a K-12 test question. If the answers below are what you have on your test . . .
- Precise
- Accurate
- Identical
- None of the above
Then the answer is <u>precise</u>.