A 1. 00 ml sample of an unknown gas effuses in 11. 1 min. an equal volume of h2 in the same apparatus under the same conditions effuses in 2. 42 minutes then the molar mass of the unknown gas is 41.9.
Molar mass of H2 = 2
Molar mass of unknown gas = ?
rate 1 = 11.1
rate 2 = 2.42
<h3>What is graham law? </h3>
Graham's law states that the rate of diffusion or effusion of a given gas is inversely proportional to the square root of its molar mass.
By apply graham law
Rate1/rate2 = sqrt(MW2/MW1)
![[\frac{rate1}{rate2} ]^{2} = \frac{MW2}{2} \\\\\\mw= 2[\frac{11.1}{2.42} ]^{2} \\\\= 20.97 X 2 \\\\= 41.9](https://tex.z-dn.net/?f=%5B%5Cfrac%7Brate1%7D%7Brate2%7D%20%5D%5E%7B2%7D%20%3D%20%5Cfrac%7BMW2%7D%7B2%7D%20%5C%5C%5C%5C%5C%5Cmw%3D%202%5B%5Cfrac%7B11.1%7D%7B2.42%7D%20%5D%5E%7B2%7D%20%5C%5C%5C%5C%3D%2020.97%20X%202%20%5C%5C%5C%5C%3D%2041.9)
Thus, we found that the molar mass of the unknown gas is 41.9.
Learn more about graham's law: brainly.com/question/12415336
#SPJ4
November 19 ,2016 <3 =) it actually depends if you said yes
Answer:
pCH4 = 0.9184 atm
pCCl4 = 0.9184 atm
pCH2Cl2 = 0.2832 atm
Explanation:
Step 1: Data given
The equilibrium constant, Kp= 9.52 * 10^-2
Temperature = 350 K
Each have an initial pressure of 1.06 atm
Step 2: The balanced equation
CH4(g) + CCl4(g) ⇆ 2CH2Cl2(g)
Step 3: The pressure at the equilibrium
pCH4 = 1.06 - X atm
pCCl4 = 1.06 - X atm
pCH2Cl2 = 2X
Step 4: Calculate Kp
Kp = (2X)² / (1.06 - X)*(1.06 - X)
9.52 * 10^-2 = 4X² / (1.06 - X)*(1.06 - X)
X = 0.1416
Step 5: Calculate the partial pressure
pCH4 = 1.06 - 0.1416 = 0.9184 atm
pCCl4 = 1.06 - 0.1416 = 0.9184 atm
pCH2Cl2 = 2 * 0.1416 = 0.2832 atm
Kp = (0.2832²) / (0.9184*0.9184)
Kp = 9.52 * 10^-2
pCH4 = 0.9184 atm
pCCl4 = 0.9184 atm
pCH2Cl2 = 0.2832 atm
A covalent bond is the sharing of two electrons. Therefore, in a double covalent bond, where there are two covalent bonds, 4 electrons are shared. So the answer is (4)
Answer:
c. The N2 molecules collide more frequently with the walls of the flask than do the Ar atoms.
Explanation:
The statements are:
a. There are more molecules of N2 present than atoms of Ar. <em>FALSE</em>. Because 1 mol of molecules of N2 = 28g and 1 mol of molecules of Ar = 40g. As there are equal MASSES, you will have more molecules of N2 than Ar molecules
b. The pressure is greater in the Ar flask. <em>FALSE</em>
Because pressure is directly proportional to amount of molecules. As molecules N2 > Molecules Ar. The pressure is greater in N2 flask
c. The N2 molecules collide more frequently with the walls of the flask than do the Ar atoms. <em>TRUE</em>
The collision probability of N2 is higher because there are more molecules presents