Answer:
15.98 L
Explanation:
First, you need to find T1, T2, V1 and V2.
T1 = 25 C = 298.15 K (25C + 273.15K)
T2 = 100 C = 373.15 K (100C + 273.15K)
V1 = 20. L
V2 = ? (we are trying to find)
Next, rearrange to fit the formula
V2 = V1 x T1 / T2
Next, fill in with our numbers
V2 = 20. L x 298.15 K / 373.15 K
Do the math and you should get...
15.98 L
- If you need more help or futher explanation please let me know. I would be glad to help!
I would assume so.
Given

, we can simplify the fraction to

Both would obtain the same proportions, so I don't see why putting a half cup of sugar would make things any different.
Hope this is the answer you are looking for.
The molarity of aqueous lithium bromide, LiBr solution is 0.2 M
We'll begin by calculating the number of mole of Pb(NO₃)₂ in the solution.
- Volume = 10 mL = 10 / 1000 = 0.01 L
- Molarity of Pb(NO₃)₂ = 0.250 M
- Mole of Pb(NO₃)₂ =?
Mole = Molarity x Volume
Mole of Pb(NO₃)₂ = 0.25 × 0.01
Mole of Pb(NO₃)₂ = 0.0025 mole
Next, we shall determine the mole of LiBr required to react with 0.0025 mole of Pb(NO₃)₂
Pb(NO₃)₂ + 2LiBr —> PbBr₂ + 2LiNO₃
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted with 2 mole of LiBr.
Therefore,
0.0025 mole of Pb(NO₃)₂ will react with = 2 × 0.0025 = 0.005 mole of LiBr
Finally, we shall determine the molarity of the LiBr solution
- Mole = 0.005 mole
- Volume = 25 mL = 25 / 1000 = 0.025 L
- Molarity of LiBr =?
Molarity = mole / Volume
Molarity of LiBr = 0.005 / 0.025
Molarity of LiBr = 0.2 M
Learn more about molarity: brainly.com/question/10103895
Answer:
measuring cups, do you have them? look