Answer:
The terms of biosafety in a laboratory require that the person must not have the eyes and skin exposed.
Explanation:
A corrosive substance is a substance that can damage a surface when they come into contact.
These substances represent a danger in people since they can burn the eyes, the skin, and the inside of the body since the inhalation of gases can burn the respiratory tract.
These chemical burns can be avoided by properly following the biosafety protocol that a laboratory requires the use of masks, goggles, gloves, and an apron or lab coat.
Answer:
a. Temperatures increase can change a solid to a liquid, but cannot change a liquid to a solid
b. The particles in a solid are much closer together than the particles in a liquid.
Explanation:
Any material expands when heated and contracts when cooled. So, when a body is heated to a particular temperature, it starts melting and changes into a liquid.
As the material expands the distance between the atoms or molecules increases and it will become a liquid. So it can move around the material. It doesn't become solid on further heating. But water is an exception where it contracts when heated from 0° to 4° C.
In solids, these atoms or molecules are closely packed. It is rigidly fixed.
The solid, as well as the liquid, has a definite volume, but the liquid does not have a definite shape.
Answers:
a) 154.08 m/s=554.68 km/h
b) 108 m/s=388.8 km/h
Explanation:
<u>The complete question is written below:
</u>
<u></u>
<em>In 1977 off the coast of Australia, the fastest speed by a vessel on the water was achieved. If this vessel were to undergo an average acceleration of
, it would go from rest to its top speed in 85.6 s. </em>
<em>a) What was the speed of the vessel?
</em>
<em>
</em>
<em>b) If the vessel in the sample problem accelerates for 1.00 min, what will its speed be after that minute? </em>
<em></em>
<em>Calculate the answers in both meters per second and kilometers per hour</em>
<em></em>
a) The average acceleration
is expressed as:
(1)
Where:
is the variation of velocity in a given time
, which is the difference between the final velocity
and the initial velocity
(because it starts from rest).

Isolating
from (1):
(2)
(3)
(4)
If
and
then:
(4)
b) Now we need to find the final velocity when
:
<em></em>
(5)
(6)
Answer:
no
Explanation:
we can't hit a monkey at a slow speed with gravity on
Answer:
Explanation:
For elestic collision
v₁ = 
[/tex]
Here u₁ = 0 , u₂ = 22 m/s , m₁ = 77 kg , m₂ = .15 kg , v₁ and v₂ are velocity of goalie and puck after the collision.
v₁ = 0 + ( 2 x .15 x22 )/ 77.15
= .085 m / s
Velocity of goalie will be .085 m/s in the direction of original velocity of ball before collision.
v₂ = (.15 - 77)x 22 / 77.15 +0
= - 21.91 m /s
=Velocity of puck will be - 21.91 m /s in the direction opposite to original velocity of ball before collision.