The black squirrel has zero kinetic energy (if it's not moving) and lower gravitational potential energy than the red squirrel or zero gravitational potential energy if the ground is assumed to be zero gravitational potential line.
The refractive index for glycerine is

, while for air it is

.
When the light travels from a medium with greater refractive index to a medium with lower refractive index, there is a critical angle over which there is no refraction, but all the light is reflected. This critical angle is given by:

where n1 and n2 are the refractive indices of the two mediums. If we susbtitute the refractive index of glycerine and air in the formula, we find the critical angle for this case:
Answer:
Net forces which pushes the window is 30342.78 N.
Explanation:
Given:
Dimension of the office window.
Length of the window =
m
Width of the window =
m
Area of the window = 
Difference in air pressure = Inside pressure - Outside pressure
=
atm =
atm
Conversion of the pressure in its SI unit.
⇒
atm =
Pa
⇒
atm =
Pa
We have to find the net force.
We know,
⇒ Pressure = Force/Area
⇒ 
⇒ 
⇒ Plugging the values.
⇒
⇒
Newton (N)
So,
The net forces which pushes the window is 30342.78 N.
<span>F x L = W x X whereW=weight is total load = 80, L is length from fulcrum which is the unknown and what we are solving for. x= length we know. and F equals 50 force we know. So (W*X)/F=LL equals 64</span>
Answer:
650 km/hr
Explanation:
Draw a right triangle from (0.0) (Point A) down 30 degrees and to the right for a length of 750 (Point B). Then draw a line from B up to the x axis to make a right angle (Point C). Use the cosine function to find line AC, the vector portion of AB that lies of the x (East) axis. Cosine(30)= Adjacent/Hypotenuse.
Cos(30) = AC/750
750*(cos(30)) = AC
AC = 649.5 km/hr