Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force = 
Electrostatic force = 
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get



v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.
The basic difference is that the ordinary sources are incoherent that means that the discrete frequencies merge up to give an intermediate between the maximum and minimum frequencies. While the laser is coherent containing the single frequency with maximum amplitude. thus travelling far.
Answer: 3.4s
Explanation:
There are three stages in the motion of the ball, so you have to calculate the times for every stage.
1) Ball dropping from 9.5m: free fall
d = Vo + gt² / 2
Vo = 0 ⇒ d = gt² / 2 ⇒ t² = 2d / g = 2 × 9.5 m / 9.81 m/s² = 1.94 s²
⇒ t = √ (1.94 s²) = 1.39s
2) Ball rising 5.7m (vertical rise)
i) Determine the initial speed:
Vf² = Vo² - 2gd
Vf² = 0 ⇒ Vo² = 2gd = 2 × 9.81 m/s² × 5.7m = 111.8 m²/s²
⇒ Vo = 10.6 m/s
ii) time rising
Vf = Vo - gt
Vf = 0 ⇒ Vo = gt ⇒
t = Vo / g = 10.6 m/s / 9.81 m/s² = 1.08 s
3) Ball dropping from 5.7 m to 1.20m above the pavement (free fall)
i) d = 5.7m - 1.20m = 4.5m
ii) d = gt² / 2 ⇒ t² = 2d / g = 2 × 4.5 m / 9.81 m/s² = 0.92 s²
⇒ t = √ (0.92 s²) = 0.96s
4) Total time
t = 1.39s + 1.08s + 0.96s = 3.43s ≈ 3.4s
Acceleration is equal to velocity final minus velocity initial divided by time. 6m/s minus 4m/s divided by 5 seconds is 0.4m/s^2.