Answer:
Force exerted, F = 1.5 N
Explanation:
It is given that, a boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s.
i.e. u = 0
v = 30 m/s
Time taken, t = 0.06 s
Mass of the paper, m = 0.003 kg
We need to find the force the boxer exert on it. The force can be calculated using second law of motion as :



F = 1.5 N
So, the force the boxer exert on the paper is 1.5 N. Hence, this is the required solution.
Answer:
put these numbers in the boxes from up to down. hope this helps! :)
Explanation:
7
6
3
1
8
4
2
5
Answer:
The pressure is 
Explanation:
From the question we are told that
The initial pressure is 
The temperature is 
Let the first volume be
Then the final volume will be 
Generally for a diatomic gas

Here r is the radius of the molecules which is mathematically represented as

Where
are the molar specific heat of a gas at constant pressure and the molar specific heat of a gas at constant volume with values

=> 
=> 
=> ![P_2 = [\frac{1}{2} ]^{\frac{7}{5} } * 11.2](https://tex.z-dn.net/?f=P_2%20%20%3D%20%20%5B%5Cfrac%7B1%7D%7B2%7D%20%5D%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%20%2A%2011.2)
=> 
To solve this problem we will apply the principle of conservation of energy and the definition of kinematic energy as half the product between mass and squared velocity. So,


Here,
m = Mass
V = Velocity
Replacing,


Therefore the final kinetic energy of the two car system is 72.6kJ
Because it's the basis of how everything around you works