** Missing information: The vertical distance from surface of liquid to bottom of the object is sought in this question, with the condition that the object is at equilibrium **
Ans: The vertical distance = y = M/(ρA)
Explanation:Support the vertical distance = y
Object's density = M/(A*h) (since A*h = volume)
By applying the condition,
(M/(Ah))/ρ = y/h
M/(ρAh) = y/h
y = M/(ρA)
Answer:
Point C
Explanation:
Centripetal acceleration ac is inversely proportional to radius of orbit so it is greatest at point C.
Answer:
The net force applied to the car is zero.
Explanation:
We are given that a car is moving to the left with constant velocity.
When the car moving with constant velocity
Then, the final velocity=Initial velocity
Change in velocity=Final velocity- initial velocity=0
When change in velocity is zero then , acceleration of car

When acceleration is zero then, By Newtons second law

The net force applied on the car will be zero.
Option C:The net force applied to the car is zero.
Here, K.E. = 1/2 * mv²
So, K.E. = 1/2 * (1200) * (24)²
K.E. = 1/2 * 1200 * 576
K.E. = 600 * 576
K.E. = 345,600 J
Hope this helps!