Answer:
18min
Explanation:
v=d/t
t=d/v= 27/90 =0.3hrs =18min
Answer:Half-life is the amount of time it takes for the initial mass of the isotope to decompose, by half, into other lighter atoms.
Explanation:Different radioactive isotopes have different half-lives. For example, the element technetium-99m has a half life of 6 hours. This means that is 100 kg of the element is left to decay, in 6 hours, 50kg of the mass will have changed into other elements/atoms. The half-life of uranium-238 is 4.5 billion years while that of polonium-216 is only 0.145 seconds.
I'm pretty sure its Venus!!!
Answer:
A velocity time graph shows the change of velocity of an object with respect ot time. If the slope of the graph is increasing in the postive region, it means that the velocity is changing, if the slope is decreasing, it means the the velocity is decreasing, but the object is moving in the same direction (positve direction).
If this slope intersects the graph at x-axis, it means that the body has 0 velocity and has become still. After that, if the line enters in the negative region, it means that its velocity is started to increases again, but the body is movinging in the opposite direction (negative direction)
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity