Answer:
hydrogen bridge
Explanation:
Joule's relationship to heat and temperature is true for all materials where we assume that interatomic forces are linear, when atoms separate these forces decrease. There is a point where the separation between atoms is enough that thermal agitation can separate the molecules and there is a change of state, generally from solid to liquid and from liquid to vapor. When these changes of state are occurring all the energy supplied is used to break the links, so the temperature does not change.
In the specific case of water, there is a bond called a hydrogen bridge that breaks around 4ºC, therefore, at this temperature there is a deviation from the curve since this link is being broken, this does not lead to a change of macroscopic state.
For the other temperatures the water behaves like the other bodies.
The heat form the Mylar outside her window may transfer the heat to the walls. Which then tanker the heat inside Lucia’s home.
Answer: The fundamental frequency of the slinky = 8Hz
An input frequency of 28 Hz will not create a standing wave
Explanation:
Let Fo = fundamental frequency
At third harmonic,
F = 3Fo
If F = 24Hz
24 = 3Fo
Fo = 24/3 = 8Hz
If an input frequency = 28 Hz at 3rd harmonic
Let find the fundamental frequency
28 = 3Fo
Fo = 28/3
Fo = 9.33333Hz
Since Fo isn't a whole number, it can't create a standing wave
Answer:3,45 x 10^9 N
Explanation: We have considered the total charge for each coin , this is the total atoms x 29 electrons for cooper and multiplier by electron charge, the total charge for each coin is 0,464 C
Finally we use the Coulomb law,
F=k Q/ (r)^2
equilibrium i think if not sorry