Answer:
It would be True
Explanation:
Because they both have the same push of gravity. Gravity affects all objects equally. If you drop an egg and a watermelon at the same time they would both collide with the floor at the same time.
Answer:
The correct answer is:
<em>(1) It is important that the sample is dissolved in just enough hot solvent. </em>
Explanation:
The process of recrystallization is important to eliminate the impurities and to obtain better crystals of the solid. The solvent used to perform the recrystallization must have a high dissolution power of the substance to be recrystallized and a low dissolution power of the impurities. This is in order to eliminate most impurities. Furthermore, <em>It is important that the sample is dissolved in just enough hot solvent </em>because this should be easy to remove after the recrystallization and the crystal should form easily when the solution cools. Also, it is better to add the hot solvent to solubilize the crystals and keep the impurities insoluble, instead of adding the cold solvent and heating the solution. Additionally, the process of cooling the solution must be done slowly to obtain large and fewer crystals. A fast ice-cooling will form smaller crystals.
The coefficient in a chemical formula represents the amount of each chemical present. The amount of a substance is measured in moles.
Answer:
B. Molarity will decrease
Explanation:
Molarity is one of the measures of the molar concentration of a solution. It is calculated by dividing the number of moles of the solute by the volume of the solvent. This means that the higher the amount of solute in relation to the volume of solvent, the higher the molarity of that solution.
In essence, adding water to a solution dilutes it i.e it increases the solvent's volume in relation to the solute, causing the molarity to decrease. In a nutshell, diluting a solution (by adding water or more solvent) causes the molarity of such solution to decrease. For example, if water is added to a 0.70 molar solution of CuSO4, the molarity of the solution will DECREASE.
Answer:
This is a coal combustion process and we will assume
Inlet coal amount = 100kg
It means that there are
15kg of H2O, 2kg of Sulphur and 83kg of Carbon
Now to find the mole fraction of SO2(g) in the exhaust?
Molar mass of S = 32kg/kmol
Initial moles n of S = 2/32 = 0.0625kmols
Reaction: S + O₂ = SO₂
That is 1 mole of S reacts with 1 mole of O₂ to give 1 mole of SO₂
Then, it means for 0.0625 kmoles of S, we will have 0.0625 kmole of SO2 coming out of the exhaust
The mole fraction of SO2(g) in the exhaust=0.0625kmols
Explanation: