Answer:
It would not be possible the cohesion among water molecules by the polar covalent bonding.
Well, to understand this in a better way, let's begin by explaining that water is special due to its properties, which makes this fluid useful for many purposes and for the existence of life.
In this sense, one of the main properties of water is cohesion (molecular cohesion), which is the attraction of molecules to others of the same type. So, water molecule (
) has 2 hydrogen atoms attached to 1 oxygen atom and can stick to itself through hydrogen bonds.
How is this possible?
By the polar covalent bonding, a process in which electrons are shared unequally between atoms, due to the unequal distribution of electrons between atoms of different elements. In other words: slightly positive and slightly negative charges appear in different parts of the molecule.
Now, it can be said that a water molecule has a negative side (oxygen) and a positive side (hydrogen). This is how the oxygen atom tends to monopolize more electrons and keeps them away from hydrogen. Thanks to this polarity, water molecules can stick together.
Acceleration=(speed end - speed start)/ time
Data:
speed end=4 m/s
speed start=0 m/s
time=2.5 s
acceleration=(4 m/s - 0 m/s)/2.5 s=1.6 m/s²
Answer: the acceleration would be 1.6 m/s²
Complete Question:
Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric force on sphere B due to sphere A is F . F. The magnitude of the electric force on sphere A due to sphere B must be:
A. 2F
B. F/4
C. F/2
D. F
E. 4F
Answer:
D.
Explanation:
If both spheres can be treated as point charges, they must obey the Coulomb's law, that can be written as follows (in magnitude):

As it can be seen, this force is proportional to the product of the charges, so it must be the same for both charges.
As this force obeys also the Newton's 3rd Law, we conclude that the magnitude of the electric force on sphere A due to sphere B, must be equal to the the magnitude of the force on the sphere B due to the sphere A, i.e., just F.
Answer:
c) It has a greater frequency than red light but a smaller frequency than blue light.
Explanation:
According to the relation:
c = frequency × Wavelength
The higher the frequency, the lower the value of wavelength
The order of wavelength is:
Violet < Indigo < Blue < Green < Yellow < Orange < Red
Stated above, frequency is inversely proportional to the wavelength. Thus, the order of wavelength is:
Violet > Indigo > Blue > Green > Yellow > Orange > Red
Thus,
<u>Green light has lower frequency than blue light and higher than red light.</u>
It’s both a solid and a liquid. It can thicken and soften depending on how it’s handled. It can be used to cover wounds to stop bleed, and used to drown enemies. Bungee Gum has the properties of both rubber and gum.