Answer:
we see it is a linear relationship.
Explanation:
The magnetic flux is u solenoid is
B = μ₀ N/L I
where N is the number of loops, L the length and I the current
By applying this expression to our case we have that the current is the same in all cases and we can assume the constant length. Consequently we see that the magnitude of the magnetic field decreases with the number of loops
B = (μ₀ I / L) N
the amount between paracentesis constant, in the case of 4 loop the field is worth
B = cte 4
N B
4 4 cte
3 3 cte
2 2 cte
1 1 cte
as we see it is a linear relationship.
In addition, this effect for such a small number of turns the direction of the field that is parallel to the normal of the lines will oscillate,
Question four bulbs A,B,C and D are connected in a circuit shown in the figure below, the letters X, Y and Z represent three switches. Which switch is used to operate switch A separately?
Answer: x
Answer:
e. Both the acceleration and net force on the car point inward.
Explanation:
If no net force acts on the car, the car must drive in a straight line, at constant speed.
As the acceleration is defined as the rate of change of the velocity vector, this means that it can produce either a change in the magnitude of the velocity (the speed) or in the direction.
In order to the car can follow a circular trajectory, it must be subjected to an acceleration, that must go inward, trying to take the car towards the center of the circle.
The net force that causes this acceleration, aims inward, and is called the centripetal force.
It is not a different type of force, it can be a friction force, a tension force, a normal force, etc., as needed.
A= v²/R
a = 12²/30 =4.8 m/s²