Answer:
The mass of the box:
m = 60 kg
Explanation:
Given:
F = 150 N
g = 10 m/s²
_________
m - ?
Coefficient of friction wood on wood:
μ = 0.25
Friction force:
F₁ = μ*m*g
Newton's Third Law:
F = F₁
F = μ*m*g
The mass of the box:
m = F / ( μ*g) = 150 / (0.25*10) = 60 kg
Your answer is 311.29271 lbs
Answer:
The answer to the question is
The roller coaster will reach point B with a speed of 14.72 m/s
Explanation:
Considering both kinetic energy KE = 1/2×m×v² and potential energy PE = m×g×h
Where m = mass
g = acceleration due to gravity = 9.81 m/s²
h = starting height of the roller coaster
we have the given variables
h₁ = 36 m,
h₂ = 13 m,
h₃ = 30 m
v₁ = 1.00 m/s
Total energy at point 1 = 0.5·m·v₁² + m·g·h₁
= 0.5 m×1² + m×9.81×36
=353.66·m
Total energy at point 2 = 0.5·m·v₂² + m·g·h₂
= 0.5×m×v₂² + 9.81 × 13 × m = 0.5·m·v₂² + 127.53·m
The total energy at 1 and 2 are not equal due to the frictional force which must be considered
Total energy at point 2 = Total energy at point 1 + work done against friction
Friction work = F×d×cosθ = (
× mg)×60×cos 180 = -117.72m
0.5·m·v₂² + 127.53·m = 353.66·m -117.72m
0.5·m·v₂² = 108.41×m
v₂² = 216.82
v₂ = 14.72 m/s
The roller coaster will reach point B with a speed of 14.72 m/s
Answer:
Potential difference and charge will also increase.
Explanation:
Asking that :
What will happen to the charge and potential difference if the plate area were increased while the plate separation remains unchanged?
The charge is directly proportional to area of the plate. That is, increase in area of the plate of a capacitor will lead to the increase in the charges between the plates.
And since charge is also proportional to the magnitude of potential difference between the plates from the definition of capacitance of a capacitor which says that:
Q = CV
Therefore, increase in the area of the plate will also lead to increase in potential difference between the plates.
Therefore, if the plate area were increased while the plate separation remains unchanged, the charge and potential difference between them will also increase.
The speed of sound at

is approximately v=343 m/s. The distance covered by the sound wave is

And the time it takes is

Now we want to find how far the light travels during this time. Light travels at speed

, therefore the distance it covers during this time is