Answer:
C. ΔG is positive at low temperatures, but negative at high temperatures (and zero at some temperature).
Explanation:
Since we need to give energy in the form of heat to vaporize a liquid, the enthalpy is positive. In a gas, molecules are more separated than in a liquid, therefore the entropy is positive as well.
Considering the Gibbs free energy equation:
ΔG= ΔH - TΔS
+ +
When both the enthalpy and entropy are positive, the reaction proceeds spontaneously (ΔG is negative) at high temperatures. At low temperatures, the reaction is spontaneous in the reverse direction (ΔG is positive).
Answer:
C
Explanation:
the enthalpy of reaction is independent of the reaction path
Answer:
Temperature of the water
Explanation:
In every study, there must be independent and dependent variables. An independent variable is the variable that is changed in order to obtain a response. In this case, the temperature of the water is being changed, the response in this experiment is the respiration rate of the goldfish.
Thus the respiration rate of the goldfish is the dependent variable because it is controlled by the temperature of the water and changes accordingly.
Summarily, the independent variable is the temperature of the water while the dependent variable is the respiration rate of the goldfish.
In this case a double displacement reaction will take place.
Moles=volume*concentration
=0.1*.83
=.083 Moles of HC2H3O2
Mole ratio between HC2H3O2 and CO2 is 1:1
This means .083 Moles of CO2
Mass =Moles*Rfm of CO2
=.083*(12+16+16)
=3.7grams