Cos(A-B) = cosAcosB + sinAsinB
<span>
cos(</span>π/2 - θ) = cos(π/2)cosθ + sin(π/2)sinθ
π/2 = 90°
cos(π/2) = cos90° = 0. sin(π/2) = sin90° = 1
cos(π/2 - θ) = cos(π/2)cosθ + sin(π/2)sin<span>θ
</span>
= 0*cosθ + 1*sin<span>θ = </span>sin<span>θ
Therefore </span>cos(π/2 - θ) = sin<span>θ
QED </span>
Hi,
The answer is 3/2 or 4
How I got my answer:
Just think that (2x+3) OR (x-4) has to be 0.
<span>
Than you can find it out with a simple +/- calculation. </span>
<span> 2x+3=0 x-4=0
x=-3/2 or 4</span>Hope this helps you.
Answer:
45 and 5.
Step-by-step explanation:
Answer: Distributive property
Step-by-step explanation: I do believe in questions like this you would distribute from the perenthisis (right?)
If x is a real number such that x3 + 4x = 0 then x is 0”.Let q: x is a real number such that x3 + 4x = 0 r: x is 0.i To show that statement p is true we assume that q is true and then show that r is true.Therefore let statement q be true.∴ x2 + 4x = 0 x x2 + 4 = 0⇒ x = 0 or x2+ 4 = 0However since x is real it is 0.Thus statement r is true.Therefore the given statement is true.ii To show statement p to be true by contradiction we assume that p is not true.Let x be a real number such that x3 + 4x = 0 and let x is not 0.Therefore x3 + 4x = 0 x x2+ 4 = 0 x = 0 or x2 + 4 = 0 x = 0 orx2 = – 4However x is real. Therefore x = 0 which is a contradiction since we have assumed that x is not 0.Thus the given statement p is true.iii To prove statement p to be true by contrapositive method we assume that r is false and prove that q must be false.Here r is false implies that it is required to consider the negation of statement r.This obtains the following statement.∼r: x is not 0.It can be seen that x2 + 4 will always be positive.x ≠ 0 implies that the product of any positive real number with x is not zero.Let us consider the product of x with x2 + 4.∴ x x2 + 4 ≠ 0⇒ x3 + 4x ≠ 0This shows that statement q is not true.Thus it has been proved that∼r ⇒∼qTherefore the given statement p is true.