Answer: hello your question is incomplete below is the complete question
Salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (Cl−) per cubic meter. A battery is connected to metal rods that dip into a narrow pipe full of salt water. The cross sectional area of the pipe is A. The magnitude of the drift velocity of the sodium ions is VNa and the magnitude of the drift velocity of the chloride ions is VCl.
What is the magnitude of the ammeter reading ?
answer :
| I | = neAVₙₐ + neAV (Cl-)
Explanation:
Given that there are N sodium ions
<u>Determine the Magnitude of the ammeter reading </u>
| I | = current due to sodium ions + current due to (Cl-) ions
= neAVₙₐ + neAV (Cl-)
Answer : The molar mass of the solute will be
87.90 g/mol.Explanation : We know the formula for elevation in boiling point, which is
Δt = i

m
given that, Δt = 0.357,

= 5.02 and mass of

= 40,
on substituting the value we get,
0.357 = (1) X (5.02) X (x/ 0.044), on solving we get x = 2.844 X

.
Now, 0.250/ 2.844 X

=
87.90 g/mol. which is the weight of unknown component.
<h3><u>Answer;</u></h3>
The statements that are True are;
- Upon binding a molecule of oxygen, Hb undergoes a conformational change that makes the binding of subsequent O2 molecules easier.
- The conformational change induced in Hb upon binding oxygen is the result of a small movement (0.2 Å) of the iron cation in the center of heme.
- Site-directed mutagenesis studies have indicated that the cooperativity of O2 binding in Hb is attributable to the movement of the F helix in Hb.
<h3><u>Explanation</u>;</h3>
- Hemoglobin is a key pigment in the blood that transports oxygen gas to all the tissues in the body. It is made up of two types of chains; that is two alpha chains and two beta chains.
- in its deoxygenated state hemoglobin has a low affinity for oxygen compared to myoglobin. When oxygen is bound to the first subunit of hemoglobin it leads to subtle changes to the quaternary structure of the protein. This in turn makes it easier for a subsequent molecule of oxygen to bind to the next subunit.
<span>Salt compounds are composed of ions that form a tightly packed and ordered network, which is called a crystal lattice. It is held together by electrostatic forces known as ionic bonding. Ionic bonding refers to the chemical bond between two oppositely charged ions - a cation and an anion. This type of bond forms when there is a large electronegativity difference between two atoms. </span>