Answer:
The pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Explanation:
Given data:
[OH⁻] = 9.50 ×10⁻⁹M
pOH = ?
Solution:
pOH = -log[OH⁻]
Now we will put the value of OH⁻ concentration.
pOH = -log[9.50 ×10⁻⁹M]
pOH = 8
Thus the pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Answer:
The answer is (e) : phosphoglucomutase, UDP-glucose pyrophosphorylase, glycogen synthase then amylo-(1,4-1,6)-transglycosylase.
Explanation:
Phosphoglucomutase: Convert glucose-6-phosphate to glucose-1-phosphate.
UDP-glucose pyrophosphorylase: Form UDP-glucose from glucose-1-phosphate.
Glycogen synthase: Add the new glucose from UDP-glucose to the growing glycogen chain.
Amylo-(1,4-1,6)-transglycosylase: This is a branching enzyme, it initiates formation of branches evolving from the main chain.
Not sure what you are asking. I have two possible answers though...
It could either be more negatively charged, or valence electrons.
The more away from the nucleus a electron is, the more negatively charged it is.
The electrons on the outermost electron shell is valence electrons.
Again, I don't know what you were asking, but one of these answers may be correct.
Answer: its the first one buster
A. High energy radiation produced in the ozone layer. (: