B steam causes wheels to turn is correct
Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.
Given:
The overall average speed = 25 cm/s.
The overall average speed increased by 10%.
To find:
The new overall average speed.
Solution:
We have,
Overall average speed = 25 cm/s.
The overall average speed increased by 10%. So, the new average speed is
New overall average speed = Initial average speed + 10% of initial overall average speed



Therefore, the new overall average speed is 27.5 cm/s.
1 liter= 1,000,000 microliters
20 mL= 20,000 microliter
I hope this helped ;)))
Answer is: Ksp for strontium arsenate is 2.69·10⁻¹⁸.
Balanced chemical reaction (dissociation):
Sr₃(AsO₄)₂(s) → 3Sr²⁺(aq) + AsO₄³⁻(aq).
s(Sr₃(AsO₄)₂) = 0.0650 g/L.
s(Sr₃(AsO₄)₂) = 0.0650 g/L ÷ 540.7 g/mol = 1.2·10⁻⁴ mol/L.
s(Sr²⁺) = 3s(Sr₃(AsO₄)₂).
s(AsO₄³⁻) = 2s(Sr₃(AsO₄)₂).
Ksp = s(Sr²⁺)³ · s(AsO₄³⁻)².
Ksp = (3s)³ · (2s)².
Ksp = 108s⁵.
Ksp = 108 · (1.2·10⁻⁴ mol/L)⁵ = 2.69·10⁻¹⁸.