Answer:
Sulphuric acid + Magnesium Carbonate → Magnesium sulphate + carbon dioxide + water
Explanation:
Sulphuric acid + Magnesium Carbonate
The products are;
Magnesium sulphate, carbon dioxide and water
MgCO3 (s) + H2SO4 (aq) → MgSO4 (aq) + CO2 (g) + H2O (l)
Word Equation;
Sulphuric acid + Magnesium Carbonate → Magnesium sulphate + carbon dioxide + water
Actually, Henry's Law is an empirical value. It means that it was not obtained out of raw calculations or correlations. This was gathered from experimental results. Hence, you can search its data. At standard temperature of 25°C (298 K),
k = k°e^[2400(1/T - 1/T°)], where k° = 29.4 L·atm/mol
Substituting the values so that T would be in 20°C or 293 K,
k = (29.4 L·atm/mol)e^[2400(1/293 - 1/298)]
k = 33.7 L·atm/mol
Answer:
Option a.
0.01 mol of CaCl₂ will have the greatest effect on the colligative properties, because it has the biggest i
Explanation:
To determine which of the solute is going to have a greatest effect on colligative properties we have to consider the Van't Hoff factor (i)
These are the colligative properties:
ΔP = P° . Xm . i → Lowering vapor pressure
ΔT = Kb . m . i → Boiling point elevation
ΔT = Kf . m . i → Freezing point depression
π = M . R . T → Osmotic pressure
Van't Hoff factor are the numbers of ions dissolved in the solution. For nonelectrolytes, the i values 1.
CaCl₂ and KNO₃ are two ionic solutes. They dissociate as this:
CaCl₂ → Ca²⁺ + 2Cl⁻
We have 1 mol of Ca²⁺ and 2 chlorides, so 3 moles of ions → i = 3
KNO₃ → K⁺ + NO₃⁻
We have 1 mol of K⁺ and 1 mol of nitrate, so 2 moles of ions → i = 2
Option a, is the best.
Answer:
B. burning a piece of wood
Explanation:
The Chemical Would Be The Air Coming From The Wood While Burning It
Tell Me If Im Correct
Formula: % by mass = (mass of solute / mass of solution] *100
Data:
mass of solution = 80.85 g
% by mass = 22.4%
Unknown = mass of solute
Solution
% by mass = (mass of solute / mass of solution] *100 = >
mass of solute = % by mass * mass of solution / 100
mass of solute = 22.4 * 80.85 / 100 = 18.11 g
Answer: 18.11 g