Answer:
It is greater than -600kJ/mol and the amount of energy required to break bonds is greater than the amount of energy released in forming bonds.
Explanation:
In an endothermic reaction, the reaction requires a determined amount of energy to occurs.
The reaction of the problem has H = -600kJ/mol. The reaction is endothermic and the energy that the reaction needs is absorbed by the reactants. That means, the energy of products:
Is greater than -600kJ/mol and the amount of energy required to break bonds is greater than the amount of energy released in forming bonds.
Answer:
k = 2,04x10⁻⁵
Explanation:
The equilibrium of acetic acid (CH₃COOH) in water is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺.
And the equilibrium constant is defined as:
k = [CH₃COO⁻] [H⁺] / [CH₃COOH] <em>(1)</em>
The equiibrium concentration of each specie if the solution of acetic acid is 0,05M is:
[CH₃COOH] = 0,05M - x
[CH₃COO⁻] = x
[H⁺] = x
<em>-Where x is the degree of reaction progress-</em>
As the pH is 3, [H⁺] = 1x10⁻³M. That means x = 1x10⁻³M
Replacing in (1):
k = (1x10⁻³)² / 0,05 - 1x10⁻³
k = 1x10⁻⁶ / 0,049
<em>k = 2,04x10⁻⁵</em>
<em></em>
I hope it helps!
Answer:
0.134 moles of H₂ can be formed if a 3.25g sample of Mg reacts with excess HCl
Explanation:
The balanced reaction is:
Mg + 2 HCl → MgCl₂ + H₂
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles react:
- Mg: 1 mole
- HCl: 2 moles
- MgCl₂: 1 mole
- H₂: 1 mole
Being:
- Mg: 24. 31 g/mole
- H: 1 g/mole
- Cl: 35.45 g/mole
the molar mass of the compounds participating in the reaction is:
- Mg: 24.31 g/mole
- HCl: 1 g/mole + 35.45 g/mole= 36.45 g/mole
- MgCl₂: 24.31 g/mole + 2*35.45 g/mole= 95.21 g/mole
- H₂: 2*1 g/mole= 2 g/mole
Then, by stoichiometry of the reaction, the following quantities of mass participate in the reaction:
- Mg: 1 mole* 24.31 g/mole= 24.31 g
- HCl: 2 moles* 36.45 g/mole= 72.9 g
- MgCl₂: 1 mole* 95.21 g/mole= 95.21 g
- H₂: 1 mole* 2 g/mole= 2 g
Then you can apply the following rule of three: if by stoichiometry 24.31 grams of Mg form 1 mole of H₂, 3.25 grams of Mg how many moles of H₂ will they form?

moles of H₂= 0.134
<u><em>0.134 moles of H₂ can be formed if a 3.25g sample of Mg reacts with excess HCl</em></u>