I think your answer would be (D) microscope with a video camera
Hope i helped!
Answer:
The observed wavelength on Earth from that hydrogen atom is
.
Explanation:
Given that,
The actual wavelength of the hydrogen atom, 
A hydrogen atom in a galaxy moving with a speed of, 
We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

is the observed wavelength

So, the observed wavelength on Earth from that hydrogen atom is
. Hence, this is the required solution.
The wavelength of the third line in the Lyman series, and identify the type of EM radiation
In this series, the spectral lines are obtained when an electron makes a transition from any high energy level (n=2,3,4,5... ). The wavelength of light emitted in this series lies in the ultraviolet region of the electromagnetic spectrum.
1 / lambda = R(h)* (
-
)
= 109678 (
-
)
= 109678 (8/9)
Lambda = 9 / (109678 * 8 )
= 102.6 *
m = 102.6 nm
To learn more about Lyman series here
brainly.com/question/5762197
#SPJ4
Answer:
684J
Explanation:
So basically the formula for gravitational potential energy is Mass X Gravity X height. That is G.p.e = mgh
We don't have the mass but since we have the height, we multiply directly with the height since the quantity of weight is already given.
so G.p.e = 360 X 1.9 = 684J
Note that; The answer is in joules because g.p.e is work done.
Hope that was helpful!!