Not sure. How to answer this question.Look it up
Answer:
Dispersion forces.
Explanation:
CO2 contains dispersion forces, and covalent bonds. It is a linear molecule, and the bond angle of O-C-O is 180 degree. O is more electronegative than C, the C-O contains polar bond with the having negative end pointing towards the O.
CO contains two C-O bonds. They cancel each other out because of the dipoles point in opposite directions. Although, CO2 contains polar bonds, it is known as a nonpolar molecule. So, the only intramolecular forces which CO2 having are London dispersion forces.
A radioactive element has an unstable nucleus that emits particles in the form of alpha, beta, or gamma radiation. A stable element has a nucleus that does not emit such particles
Answer:
Potassium cation = K⁺²
Explanation:
The metal cation in K₂SO₄ is K⁺². While the anion is SO₄²⁻.
All the metals have tendency to lose the electrons and form cation. In given compound the metal is potassium so it should form the cation. The overall compound is neutral.
The charge on sulfate is -2. While the oxidation state of potassium is +1. So in order to make compound overall neutral there should be two potassium cation so that potassium becomes +2 and cancel the -2 charge on sulfate and make the charge on compound zero.
2K⁺² , SO₄²⁻
K₂SO₄
Answer: See description
Explanation:
Kepler's laws have three principal points:
1. planets orbit the sun in elliptical paths
2. the orbial period is related to the orbital distance by 
where T is the orbital period and d is the orbital distance, T is in years and d is measured in units of the earth sun distance.
3. planets closer to the sun move faster than planets far away from it.
Newton:
Newton discovered that there is a consequence to the gravity exerted by objects: mass, the heavier the planet, the more gravitational force it posseses ( thats why we orbit the sun)
with the gravitational force
newton discovered the inverse-quadratic relationship between the distance of the planets and the acceleration exerted by the force one could exert on another.
Kepler's laws were mostly based on observed evidence with quantitative relationships between the mentioned variables. Newton's laws are based on calculus and symbolic equations. While Kepler's mode is basic, Newton took another step in and build a more general model for gravity (which was improved by general relativity later). In a nutshell Newton proved the scientific causes for Kepler's laws...