Answer:
Explanation:
Magnetic field due to a long current carrying conductor
μ₀ / 4π x 2i / r ( i = current , r = distance of point from wire )
= 10⁻⁷ x 2 x 120 / 6.4 ( i = 120 A , r = 6.4m )
= 37.5 x 10⁻⁷ T .
= 3. 75 X 10⁻⁶ T .
= 3.75 µT.
b )
The direction of this field will be horizontal hence it will affect magnetic needle.
Answer:
f = 55mm, h ’= -9.89 cm
f = 200 mm, h ’= 42.5 cm
Explanation:
For this exercise let's start by finding the distance to the image, using the equation of the constructor

where f is the focal length, p and q are the distances to the object and image, respectively
lens with f₁ = 55mm = 0.55cm
=
= 1.718
q₁ = 0.582 m
lens with f₂ = 200mm = 2m
=
= 0.4
q₂ = 2.5 m
the magnification of a lens is given by
m =
h ’=
let's calculate for each lens
f = 55mm
h '= - 0.582 / 10 1.7
h ’= 0.0989 m
h ’= -9.89 cm
f = 200 mm
h '= - 2.5 / 10 1.7
h ’= -0.425 m
h ’= 42.5 cm
The negative sign indicates that the image is real and inverted
Answer:
The particles should move faster and have more space between them.
Explanation:
As the molecules heat, they should start to vibrate with the energy. When they vibrate, the space between them increases.
Answer:
A - Watt
Explanation:
Watt is the unit of electrical power in a metric system, expressed in terms of energy per second, equal to the work done at a rate of 1 joule per second is
power formula is P = V × I,
where V is the voltage in a circuit
I is the current flowing through that circuit.
In the SI (metric) system, the units of power are watts.
The horizontal speed has no effect on how long it takes to reach the ground.
A bullet shot from a gun and a bullet dropped from the front end of the gun
at the same time as the shot both hit the ground at the same time.
The number that counts is the height from which it fell . . . the 1.25 m.
I'll use this very useful formula:
Distance of free fall,
starting from rest = (1/2) · (gravity) · (time)²
1.25 m = (1/2) · (9.8 m/s²) · (time)²
Divide each side
by 4.9 m/s² : 1.25 m / 4.9 m/s² = time²
0.2551 sec² = time²
Square root each side: 0.505 sec = time
It looks like the correct choice is approximately 'A'. (rounded)