Answer:
A= 61.35
B= -44.40
Explanation:
1. Using the components method we have:

Considering that the vector sum
, then:

Then:

It means the value of x and y component is 0.
2. Determinate the equations that describe each component:

Form Eq. (1):

Replacing A in Eq. (2):

Replacing values of C, α and β in (4):

Replacing value of B in (3)

Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is being acted upon by an external force. This law is also called the law of inertia because it depends on mass.
<em>From the given question, we can </em><em>fill gaps </em><em>as follows;</em>
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Learn more about Newton's first law of motion here: brainly.com/question/10454047
An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height
Answer:
a. True
Explanation:
Solar radiation at frequencies of visible light passes through the atmosphere, heating the planet's surface, subsequently this energy is emitted in infrared thermal radiation. This radiation is absorbed by the gases produced by the combustion of fossil fuels. Therefore, the greater the amount of these gases in the atmosphere, the more heat will be trapped in the earth, raising its global temperature.
(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy