Answer:
y-32=-4(x-25) point slope form
Step-by-step explanation:
y-y1=m(x-x1)
y-32=-4(x-25)
Answer:
The width of the rectangle is 4x^24x
2
4, x, squared
The length of the rectangle is 2x^3+3x+52x
3
+3x+5
Step-by-step explanation:
Given info:
Compound Interest = Rs.1290
Rate of Interest = 15% p.a
Time = 2 years
<h3>Formula we have to know:-</h3>

<u>Where</u>
C.I = Compound Interest
P = Principle
R = Rate of Interest
N = Time

Here
C.I = Rs.1290
R = 15%
N = 2 years
Principle = ?
Now,Calculating the sum (Principle) borrowed by Rachna
![\quad{: \implies{\sf{C.I = \Bigg[P \bigg(1 + \dfrac{R}{100} \bigg)^{n} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%20%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7BC.I%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%281%20%20%2B%20%5Cdfrac%7BR%7D%7B100%7D%20%5Cbigg%29%5E%7Bn%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
Substituting the given values
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(1 + \dfrac{15}{100} \bigg)^{2} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%281%20%20%2B%20%5Cdfrac%7B15%7D%7B100%7D%20%5Cbigg%29%5E%7B2%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{(1 \times 100) + 15}{100} \bigg)^{2} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B%281%20%5Ctimes%20100%29%20%2B%2015%7D%7B100%7D%20%5Cbigg%29%5E%7B2%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{115}{100} \bigg)^{2} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B115%7D%7B100%7D%20%5Cbigg%29%5E%7B2%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{115}{100} \times \dfrac{115}{100} \bigg) - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B115%7D%7B100%7D%20%5Ctimes%20%5Cdfrac%7B115%7D%7B100%7D%20%20%5Cbigg%29%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{13225}{10000} \bigg) - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B13225%7D%7B10000%7D%20%5Cbigg%29%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg( \cancel{\dfrac{13225}{10000}} \bigg) - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%20%5Ccancel%7B%5Cdfrac%7B13225%7D%7B10000%7D%7D%20%5Cbigg%29%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg({1.3225 - 1} \bigg) \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%7B1.3225%20-%201%7D%20%5Cbigg%29%20%5CBigg%5D%7D%7D%7D)








<u>Hence,</u>
The sum (Principle) is Rs.4000.
Answer: 30 i believe
Step-by-step explanation:
<h3>Answer: Choice D
</h3>
=======================================================
Explanation:
Let's go through the answer choices one by one to see which are true, and which are false.
- Choice A) This is true because as we approach x = 2 from the left hand side, the y values get closer to y = 1 from the top
- Choice B) This is true. As we get closer to x = 4 on the left side, the blue curve is heading downward forever toward negative infinity. So this is what y is approaching when x approaches 4 from the left side.
- Choice C) This is true also. The function is continuous at x = -3 due to no gaps or holes at this location, so that means its limit here is equal to the function value.
- Choice D) This is false. The limit does exist and we find it by approaching x = -4 from either side, and we'll find that the y values are approaching y = -2. In contrast, the limit at x = 2 does not exist because we approach two different y values when we approach x = 2 from the left and right sides (approach x = 2 from the left and you get closer to y = 1; approach x = 2 from the right and you get closer to y = -2). So again, the limit does exist at x = -4; however, the function is not continuous here because its limiting value differs from its function value.
- Choice E) This is true because the function curve approaches the same y value from either side of x = 6. Therefore, the limit at x = 6 exists.