2x - 48 >= 4
2x >= 52
x >= 26
answer is D. x >= 26
I don't like trying all of them so I will make up my own which will probably be in the answers
so equation is
f(x)=pay
x=hours worked
solve so
f(1)=110
f(2)=130
f(3)=150
f(4)=170
they seem to be increasing in 20 increments so therefor the pay is linked to hours times 20 so that measn that every hour he works, he gets 20 dollars
therefor the answer is f(n+1)=f(n)+20 since we know that 1 hour=$20 so n+1hour=n+$20
the answe ris f(n+1)=f(n)+20
The output is the cute of the input is written as y = x³.
Answer:
Step-by-step explanation:
a. Since the parabola is compressed by a factor of 1/3 we can state:
- a parabola is written this way : y=(x-h)²+k
- h stands for the translation to the left ⇒ 2*3=6
- k for the units down ⇒4*3=12
So the equation is : y=(x-6)²+12
b.Here the parabola is stretched by a factor of 2 so we must multiply by 1/2
- We khow that a parabola is written this way : y=(x-h)²+k
- (h,k) are the coordinates of the vertex
- the maximum value is 7*0.5=3.5
- we khow tha the derivative of a quadratic function is null in the maximum value
- so let's derivate (x-h)²+k= x²+h²-2xh+k
- f'(x)= 2x-2h h is 1 since the axe of simmetry is x=1
- f'(x)=2x-2 ⇒2x-2=0⇒ x= 1
- Now we khow that 1 is the point where the derivative is null
- f(1)=3.5
- 3.5=(x-1)²+k
- 3.5= (1-1)²+k⇒ k=3.5
So the equation is : y=(x-1)²+3.5
7.
the maximum height is where the derivative equals 0
- h= -5.25(t-4)²+86
- h= -5.25(t²-8t+16)+86
- h=-5.25t²+42t-84+86
- h=-5.25t²+42t+2
Let's derivate it :
- f(x)= -10.5t+42
- -10.5t+42=0
- 42=10.5t
- t= 42/10.5=4
When the height was at max t=4s
- h(max)= -5.25(4-4)²+86 = 86 m
h was 86m
3.
30 divided by 10 equals 3