Given what we know, we can confirm that if you aimed light from the magenta part of the Horsehead Nebula through a spectrograph we would be able to determine more precisely the structure and details of the cloud.
<h3>How do we use Spectrums in order to understand stars?</h3>
The spectrums recorded by scientists, such as those of stars or nebulas like the horsehead nebula can tell us a great deal about the composition of said entities. Studying the spectrum can tell scientists about the chemical composition of stars or nebulas, such as information about the elements that form them, like their temperatures and densities.
<h3 /><h3>How would a discontinuous emission of hydrogen gas look in the spectrum?</h3>
This would appear as pauses in the lines of the spectrum. If the emission of the hydrogen gas were constant, there would be a continuous line on the spectrum graph to indicate the illuminated hydrogen, though if this line were discontinuous, we would be able to assume that its source is emission from another gas instead.
Therefore, we can confirm that spectrography is an essential part of scientific discovery pertaining to our universe. It allows us to study the chemical composition of stars and nebulas, and determine the sources of certain emissions like that of hydrogen gases.
To learn more about spectrographs visit:
brainly.com/question/15290407?referrer=searchResults
Answer:
Noble gases
Explanation:
Noble gases are nonreactive, nonmetallic elements in group 18 of the periodic table. As you can see in the periodic table in the figure below, noble gases include helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn).18 Jun 2021
Answer:
D
Explanation:
NO and O2 are both colourless gas. and its product is brown. thus when a brown gas is produced, you can say that NO and O2 reacted to form NO2
Answer:
The number of atoms contained by one molecule of Iron (II) Sulfate are 6.
Explanation:
Iron (II) Sulfate is mage up of two parts. One is the Positive part which constitutes of Fe⁺² and a negative part which constitutes of a polyatomic anion i.e. SO₄²⁻. As there are four Oxygen and one sulfur atom in sulfate Ion so sulfate ion contains 5 atoms in total. Therefore, five atoms from sulfate iona dn one atom of Iron ion makes a total of 6 atoms in one molecule of Iron (II) Sulfate.