The masses of the components are obtained as;
- Sodium hydrogen carbonate = 3.51 g
- Sodium carbonate = 8.708 g
<h3>What is decomposition?</h3>
The term decomposition has to do with the breakdown of the given substance into its components. The components of sodium hydrogen carbonate could be identified as water vapor, carbon dioxide gas and sodium carbonate. Among these products that have been listed here, we can see that it is only the sodium carbonate that remains as a solid. The others are gases that move away from the system that is under study.
Now putting down the equation of the reaction, we have;

Now, the loss in mass must be due to the carbon dioxide and the water. Hence we obtain the loss in mass to be 10.000 g - 8.708 g = 1.292 g
Mass of sodium hydrogen carbonate = 2 * 88 g/mol * 1.292 g/62 g/mol
= 3.51 g
Learn more about anhydrous sodium carbonate :brainly.com/question/20479996
#SPJ1
Answer:
Metal
Element: Calcium
Valency: 2
Explanation:
To find the element, let's use the periodic table. (Look below)
We already went past 3 shells, just need the 2 electrons after it.
Just skip to the 4th row and count 2 to the right
We end up at Calcium.
Calcium is a metal and we're also on the alkaline earth metals column.
Calcium will need to lose 2 electrons to reach stability, so the valency is 2.
Answer:
B
Explanation:
you're moving the decimal 8 spots to the left so it can only be B
Answer:
Density of the copper = 8.94g/cm^3
Student A results = 7.3gm/cm^3 ,9.4 gm/cm^3 , 8.3gm/cm^3
Student B results = 8.4 gm/cm^3 , 8.8 gm/cm^3 , 8gm/cm^3
From the observations we conclude that
Student A's result is accurate but not precise as the trials noted are not close to each other.
Student B's result is accurate and precise as the trials noted are close to each other.
Mean density of student A = 7.3 + 9.4 + 8.3 /3 = 8.33gm/cm^3
Mean density of student B = 8.4 + 8.8 + 8 /3 = 8.4 gm/cm^3
both the densities of A and B are 0.5 away from the actual density.