Answer:
a. 0.5 mol
b. 1.5 mol
c. 0.67
Explanation:
Fe3+ + SCN- -----> [FeSCN]2+
a. The ratio of the product to Fe3+ is 1:1. Meaning that if 0.5 mol of product was produced up then 0.5 mol of Fe3+ was used. Leaving 0.5 mol remaining at equilibrium
b. The ratio of the product to SCN= is 1:1. Meaning that if 0.5 mol of product was produced up then 0.5 mol of SCN- was used. Leaving 1.5 mol remaining at equilibrium
c. KC = 0.5/(0.5*1.5) = 0.67
Answer:
1.52 L
Explanation:
P1V1T2=V2P2T1
V2=V1T2/T1
Fill in with given values then solve
We can check this by knowing that V and T at constant P have a proportional relationship. Hence, this is correct.
- Hope that helped! Please let me know if you need further explanation.
Hey ik this isn’t a big help but there is a Chem app you can use to get your answers faster rather than waiting for someone to respond. anyways the app is called, ChemCalculator.
Answer:
It takes 1.32x10⁻⁷s for the concentration of A to fall by a factor of 8
Explanation:
The equation that represents a first-order kinetics is:
Ln ([A] / [A]₀] = -kt
<em>Where [A] is actual concentration, [A]₀ is initial concentration, K is rate constant (For the given problem, 1.57x10⁷s⁻¹ and t is time.</em>
<em />
As you want the time when you have [A] in a factor of 8 = [A] / [A]₀ = 1/8
Replacing:
Ln ([A] / [A]₀] = -kt
Ln (1/8) = -1.57x10⁷s⁻¹*t
t = 1.32x10⁻⁷s
<h3>It takes 1.32x10⁻⁷s for the concentration of A to fall by a factor of 8</h3>
If you overheat copper sulfate higher of mass will be lost that is copper sulfate will loss sulfur and oxygen which led to a higher loss of mass than if you would have heated enough. This higher mass lost will be shown in calculation as percentage of water lost